About this Journal Submit a Manuscript Table of Contents
Nursing Research and Practice
Volume 2013 (2013), Article ID 469070, 10 pages
http://dx.doi.org/10.1155/2013/469070
Review Article

Major Depressive Disorder and Measures of Cellular Aging: An Integrative Review

Department of Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, P.O. Box 980567, Richmond, VA 23298-0567, USA

Received 31 January 2013; Accepted 17 March 2013

Academic Editor: Susan Dorsey

Copyright © 2013 Patricia Anne Kinser and Debra E. Lyon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Kessler, K. R. Merikangas, and P. S. Wang, “Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century,” Annual Review of Clinical Psychology, vol. 3, pp. 137–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Marcus, K. B. Kerber, A. J. Rush et al., “Sex differences in depression symptoms in treatment-seeking adults: confirmatory analyses from the sequenced treatment alternatives to relieve depression study,” Comprehensive Psychiatry, vol. 49, no. 3, pp. 238–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Nolen-Hoeksema and L. M. Hilt, “Gender differences in depression,” in Handbook of Depression, C. L. Hammen, Ed., pp. 386–404, Guilford Press, New York, NY, USA, 2nd edition, 2009.
  4. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders: Fourth Edition, Text Revision (DSM-IV-TR), American Psychiatric Association, Arlington, Va, USA, 4th edition, 2000.
  5. B. Gaynes, L. Lux, S. Lloyd et al., “Nonpharmacologic interventions for treatment-resistant depression in adults. Comparative effectiveness review no. 33,” in AHRQ Publication No. 11-EHC056-EF, Agency for Healthcare Research and Quality (AHRQ), Rockville, Md, USA, 2011.
  6. J. A. Mauskopf, G. E. Simon, A. Kalsekar, C. Nimsch, E. Dunayevich, and A. Cameron, “Nonresponse, partial response, and failure to achieve remission: humanistic and cost burden in major depressive disorder,” Depression and Anxiety, vol. 26, no. 1, pp. 83–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. W. Colton and R. W. Manderscheid, “Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states,” Preventing Chronic Disease, vol. 3, no. 2, p. A42, 2006. View at Scopus
  8. D. J. Kupfer, E. Frank, and M. L. Phillips, “Major depressive disorder: new clinical, neurobiological, and treatment perspectives,” The Lancet, vol. 379, no. 9820, pp. 1045–1055, 2012. View at Publisher · View at Google Scholar
  9. P. A. Kinser, L. E. Goehler, and A. G. Taylor, “How might yoga help depression? A neurobiological perspective,” Explore, vol. 8, no. 2, pp. 118–126, 2012. View at Publisher · View at Google Scholar
  10. S. Cohen, D. Janicki-Deverts, and G. E. Miller, “Psychological stress and disease,” Journal of the American Medical Association, vol. 298, no. 14, pp. 1685–1687, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Hammen, “Stress and depression,” Annual Review of Clinical Psychology, vol. 1, pp. 293–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. E. Romans, E. Asllani, R. F. Clarkson, S. Meiyappan, M. J. Petrovic, and D. Tang, “Women's perceptions of influences on their mood,” Women and Health, vol. 49, no. 1, pp. 32–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. B. Stefano, J. M. Stefano, and T. Esch, “Anticipatory stress response: a significant commonality in stress, relaxation, pleasure and love responses,” Medical Science Monitor, vol. 14, no. 2, pp. RA17–RA21, 2008. View at Scopus
  14. World Health Organization, “Investing in mental health,” 2003, http://www.who.int/mental_health/en/investing_in_mnh_final.pdf.
  15. National Institute of Mental Health (NIMH), Just Over Half of Americans Diagnosed with Major Depression Receive Care. Science Update, National Institute of Mental Health, National Institutes of Health, Bethesda, Md, USA, 2010.
  16. R. Wilkinson and M. Maramot, Social Determinants of Health: The Solid Facts, U.S. Government Printing Office, Washington, DC, USA, 2003.
  17. L. Pozuelo, G. Tesar, J. Zhang, M. Penn, K. Franco, and W. Jiang, “Depression and heart disease: what do we know, and where are we headed?” Cleveland Clinic Journal of Medicine, vol. 76, no. 1, pp. 59–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. O. M. Wolkowitz, S. H. Mellon, E. S. Epel et al., “Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress—preliminary findings,” PLoS One, vol. 6, no. 3, Article ID e17837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. K. Kiecolt-Glaser and R. Glaser, “Depression and immune function central pathways to morbidity and mortality,” Journal of Psychosomatic Research, vol. 53, no. 4, pp. 873–876, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. P. Fagundes, R. Glaser, B. S. Hwang, W. B. Malarkey, and J. K. Kiecolt-Glaser, “Depressive symptoms enhance stress-induced inflammatory responses,” Brain, Behavior, and Immunity, 2012.
  21. J. Lin, E. Epel, and E. Blackburn, “Telomeres and lifestyle factors: roles in cellular aging,” Mutation Research, vol. 730, no. 1-2, pp. 85–89, 2012. View at Publisher · View at Google Scholar
  22. R. Dantzer, J. C. O'Connor, G. G. Freund, R. W. Johnson, and K. W. Kelley, “From inflammation to sickness and depression: when the immune system subjugates the brain,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 46–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Kiecolt-Glaser, L. McGuire, T. F. Robles, and R. Glaser, “Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology,” Annual Review of Psychology, vol. 53, pp. 83–107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Akiyama, O. Yamada, T. Hideshima et al., “TNFα induces rapid activation and nuclear translocation of telomerase in human lymphocytes,” Biochemical and Biophysical Research Communications, vol. 316, no. 2, pp. 528–532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Akiyama, T. Hideshima, T. Hayashi et al., “Cytokines modulate telomerase activity in a human multiple myeloma cell line,” Cancer Research, vol. 62, no. 13, pp. 3876–3882, 2002. View at Scopus
  26. A. K. Damjanovic, Y. Yang, R. Glaser et al., “Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients,” Journal of Immunology, vol. 179, no. 6, pp. 4249–4254, 2007. View at Scopus
  27. J. Choi, S. R. Fauce, and R. B. Effros, “Reduced telomerase activity in human T lymphocytes exposed to cortisol,” Brain, Behavior, and Immunity, vol. 22, no. 4, pp. 600–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. S. Epel, J. Lin, F. S. Dhabhar et al., “Dynamics of telomerase activity in response to acute psychological stress,” Brain, Behavior, and Immunity, vol. 24, no. 4, pp. 531–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Rawdin, S. H. Mellon, F. S. Dhabhar et al., “Dysregulated relationship of inflammation and oxidative stress in major depression,” Brain, Behavior, and Immunity, 2012. View at Publisher · View at Google Scholar
  31. J. Lin, E. Epel, J. Cheon et al., “Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance,” Journal of Immunological Methods, vol. 352, no. 1-2, pp. 71–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Ornish, J. Lin, J. Daubenmier et al., “Increased telomerase activity and comprehensive lifestyle changes: a pilot study,” The Lancet Oncology, vol. 9, pp. 1048–1057, 2008. View at Publisher · View at Google Scholar
  34. C. G. Parks, D. B. Miller, E. C. McCanlies et al., “Telomere length, current perceived stress, and urinary stress hormones in women,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 2, pp. 551–560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. O. T. Njajou, W. C. Hsueh, E. H. Blackburn et al., “Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study,” Journals of Gerontology A, vol. 64, no. 8, pp. 860–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. E. S. Epel, “Psychological and metabolic stress: a recipe for accelerated cellular aging?” Hormones, vol. 8, no. 1, pp. 7–22, 2009. View at Scopus
  37. R. M. Cawthon, K. R. Smith, E. O'Brien, A. Sivatchenko, and R. A. Kerber, “Association between telomere length in blood and mortality in people aged 60 years or older,” The Lancet, vol. 361, no. 9355, pp. 393–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Blackburn, “Telomeres and tetrahymena: an interview with Elizabeth Blackburn,” DMM Disease Models and Mechanisms, vol. 2, no. 11-12, pp. 534–537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Farzaneh-Far, J. Lin, E. Epel, K. Lapham, E. Blackburn, and M. A. Whooley, “Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study,” PLoS One, vol. 5, no. 1, Article ID e8612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. W. Hanna, K. L. Bretherick, J. L. Gair, M. R. Fluker, M. D. Stephenson, and W. P. Robinson, “Telomere length and reproductive aging,” Human Reproduction, vol. 24, no. 5, pp. 1206–1211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. C. B. Harley, “Telomerase therapeutics for degenerative diseases,” Current Molecular Medicine, vol. 5, no. 2, pp. 205–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. C. Hunt, W. Chen, J. P. Gardner et al., “Leukocyte telomeres are longer in African Americans than in whites: the national heart, lung, and blood institute family heart study and the Bogalusa heart study,” Aging Cell, vol. 7, no. 4, pp. 451–458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Huzen, P. van der Harst, R. A. de Boer et al., “Telomere length and psychological well-being in patients with chronic heart failure,” Age and Ageing, vol. 39, no. 2, Article ID afp256, pp. 223–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. W. Hoen, P. de Jonge, B. Y. Na et al., “Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study,” Psychosomatic Medicine, vol. 73, pp. 541–547, 2011. View at Publisher · View at Google Scholar
  45. N. Hartmann, M. Boehner, F. Groenen, and R. Kalb, “Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease,” Depression and Anxiety, vol. 27, no. 12, pp. 1111–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. M. Simon, J. W. Smoller, K. L. McNamara et al., “Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging,” Biological Psychiatry, vol. 60, no. 5, pp. 432–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. F. W. Lung, N. C. Chen, and B. C. Shu, “Genetic pathway of major depressive disorder in shortening telomeric length,” Psychiatric Genetics, vol. 17, no. 3, pp. 195–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Malan, S. Hemmings, M. Kidd, L. Martin, and S. Seedat, “Investigation of telomere length and psychological stress in rape victims,” Depression and Anxiety, vol. 28, no. 12, pp. 1081–1085, 2011. View at Publisher · View at Google Scholar
  49. O. M. Wolkowitz, S. H. Mellon, E. S. Epel et al., “Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response,” Molecular Psychiatry, vol. 17, pp. 164–172, 2012. View at Publisher · View at Google Scholar
  50. M. Wikgren, M. Maripuu, T. Karlsson et al., “Short telomeres in depression and the general population are associated with a hypocortisolemic state,” Biological Psychiatry, vol. 71, no. 4, pp. 294–300, 2012. View at Publisher · View at Google Scholar
  51. T. Elvsashagen, E. Vera, E. Boen et al., “The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder,” Journal of Affective Disorder, vol. 135, no. 1, pp. 43–50, 2011. View at Publisher · View at Google Scholar
  52. J. A. Shaffer, E. Epel, M. S. Kang et al., “Depressive symptoms are not associated with leukocyte Telomere length: findings from the Nova scotia health survey (NSHS95), a population-based study,” PLoS One, vol. 7, Article ID e48318, 2012.
  53. P. W. Hoen, J. G. Rosmalen, R. A. Schoevers, J. Huzen, P. van der Harst, and P. de Jonge, “Association between anxiety but not depressive disorders and leukocyte telomere length after 2 years of follow-up in a population-based sample,” Psychological Medicine, no. 4, pp. 689–697, 2013.
  54. L. H. Price, H. T. Kao, D. E. Burgers, L. L. Carpenter, and A. R. Tyrka, “Telomeres and early-life stress: an overview,” Biological Psychiatry, vol. 73, no. 1, pp. 15–23, 2013. View at Publisher · View at Google Scholar
  55. E. Epel, J. Daubenmier, J. T. Moskowitz, S. Folkman, and E. Blackburn, “Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres,” Annals of the New York Academy of Sciences, vol. 1172, pp. 34–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Kim, C. G. Parks, L. A. DeRoo et al., “Obesity and weight gain in adulthood and telomere length,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 3, pp. 816–820, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. O. M. Wolkowitz, E. S. Epel, and S. Mellon, “When blue turns to grey: do stress and depression accelerate cell aging?” World Journal of Biological Psychiatry, vol. 9, no. 1, pp. 2–5, 2008. View at Publisher · View at Google Scholar
  58. A. O'Donovan, J. Lin, F. S. Dhabhar et al., “Pessimism correlates with leukocyte telomere shortness and elevated interleukin-6 in post-menopausal women,” Brain, Behavior, and Immunity, vol. 23, no. 4, pp. 446–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. O. W. Wolkowitz, E. S. Epel, V. I. Reus, and S. H. Mellon, “Depression gets old fast: do stress and depression accelerate cell aging?” Depression and Anxiety, vol. 27, no. 4, pp. 327–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Epel, “How, “reversible” is telomeric aging?” Cancer Prevention Research, vol. 5, pp. 1163–1168, 2012. View at Publisher · View at Google Scholar
  61. H. Lavretsky, E. S. Epel, P. Siddarth et al., “A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: effects on mental health, cognition, and telomerase activity,” International Journal of Geriatric Psychiatry, vol. 28, no. 1, pp. 57–65, 2013. View at Publisher · View at Google Scholar
  62. J. Daubenmier, J. Lin, E. Blackburn et al., “Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study,” Psychoneuroendocrinology, vol. 37, no. 7, pp. 917–928, 2012. View at Publisher · View at Google Scholar
  63. P. Kinser, C. Bourguignon, D. Whaley, E. Hauenstein, and A. G. Taylor, “Feasibility, acceptability, and effects of a gentle Hatha yoga intervention for women with major depression: findings from a randomized controlled mixed-methods study,” Archives of Psychiatric Nursing. In press.