About this Journal Submit a Manuscript Table of Contents
Organic Chemistry International
Volume 2010 (2010), Article ID 130506, 9 pages
http://dx.doi.org/10.1155/2010/130506
Research Article

On the Importance of the Aromatic Ring Parameter in Studies of the Solvolyses of Cinnamyl and Cinnamoyl Halides

1Department of Chemistry, Wesley College, 120 N. State Street, Dover, DE 19901, USA
2Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA

Received 2 February 2010; Accepted 19 April 2010

Academic Editor: Daniel Little

Copyright © 2010 Malcolm J. D'Souza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Grunwald and S. Winstein, “The correlation of solvolysis rates,” Journal of the American Chemical Society, vol. 70, no. 2, pp. 846–854, 1948. View at Scopus
  2. D. N. Kevill and M. J. D'Souza, “Sixty years of the Grunwald-Winstein equation: development and recent applications,” Journal of Chemical Research, no. 2, pp. 61–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. v. R. Schleyer and R. D. Nicholas, “The reactivity of bridgehead compounds of adamantane,” Journal of the American Chemical Society, vol. 83, no. 12, pp. 2700–2707, 1961. View at Scopus
  4. T. W. Bentley and P. v. R. Schleyer, “Medium effects on the rates and mechanisms of solvolytic reactions,” Advances in Physical Organic Chemistry, vol. 14, pp. 32–40, 1977.
  5. T. W. Bentley and G. E. Carter, “The SN2-SN1 spectrum. 4. The SN2 (intermediate) mechanism for solvolyses of tert-butyl chloride: a revised Y scale of solvent ionizing power based on solvolyses of 1-adamantyl chloride,” Journal of the American Chemical Society, vol. 104, no. 21, pp. 5741–5747, 1982. View at Scopus
  6. T. W. Bentley and G. Llewellyn, “Yx scales of solvent ionizing power,” Progress in Physical Organic Chemistry, vol. 17, pp. 121–158, 1990.
  7. S. Winstein, E. Grunwald, and H. Walter Jones, “The correlation of solvolysis rates and the classification of solvolysis reactions into mechanistic categories,” Journal of the American Chemical Society, vol. 73, no. 6, pp. 2700–2707, 1951. View at Scopus
  8. S. Minegishi, S. Kobayashi, and H. Mayr, “Solvent nucleophilicity,” Journal of the American Chemical Society, vol. 126, no. 16, pp. 5174–5181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. D. N. Kevill, “Development and uses of scales of solvent nucleophilicity,” in Advances in Quantitative Structure-Property Relationships, M. Charton, Ed., vol. 1, pp. 81–115, JAI Press, Greenwich, Conn, USA, 1996.
  10. D. N. Kevill and S. W. Anderson, “An improved scale of solvent nucleophilicity based on the solvolysis of the S-methyldibenzothiophenium ion,” Journal of Organic Chemistry, vol. 56, no. 5, pp. 1845–1850, 1991. View at Scopus
  11. T. W. Bentley, I. S. Koo, and S. J. Norman, “Distinguishing between solvation effects and mechanistic changes. Effects due to differences in solvation of aromatic rings and alkyl groups,” Journal of Organic Chemistry, vol. 56, no. 4, pp. 1604–1609, 1991. View at Scopus
  12. K.-T. Liu, “Nucleophilic solvent intervention in benzylic solvolyses. The use of YBnX scales in Grunwald-Winstein type correlation analysis,” Journal of The Chinese Chemical Society, vol. 42, pp. 607–615, 1995.
  13. K.-T. Liu and H.-C. Sheu, “Solvolysis of 2-aryl-2-chloroadamantanes. A new Y scale for benzylic chlorides,” Journal of Organic Chemistry, vol. 56, no. 9, pp. 3021–3025, 1991. View at Scopus
  14. K.-T. Liu, Y.-S. Lin, and Y.-F. Duann, “Solvent effects on the solvolysis of some secondary tosylates. Applications of YBnOTs and YxBnOTs scales to mechanistic studies,” Journal of the Chinese Chemical Society, vol. 50, no. 1, pp. 65–72, 2003. View at Scopus
  15. D. N. Kevill and M. J. D’Souza, “Concerning the development of scales of solvent ionizing power based on solvolyses of benzylic substrates,” Journal of Physical Organic Chemistry, vol. 5, pp. 287–294, 1992.
  16. M. Fujio, Y. Saeki, K. Nakamoto, et al., “Solvent effects on anchimerically assisted solvolyses. II. Solvent effects in solvolyses of threo-2-aryl-1-methylpropyl-p-toluenesulfonates,” Bulletin of the Chemical Society of Japan, vol. 68, pp. 2603–2617, 1995.
  17. D. N. Kevill, N. H. J. Ismail, and M. J. D'Souza, “Solvolysis of the (p-methoxybenzyl)dimethylsulfonium ion. Development and use of a scale to correct for dispersion in Grunwald-Winstein plots,” Journal of Organic Chemistry, vol. 59, no. 21, pp. 6303–6312, 1994. View at Scopus
  18. M. C. Reis, R. Elvas-Leitão, and F. Martins, “The influence of carbon-carbon multiple bonds on the solvolyses of tertiary alkyl halides: a grunwald-winstein analysis,” International Journal of Molecular Sciences, vol. 9, no. 9, pp. 1704–1716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. N. Kevill and M. J. D’Souza, “Use of the simple and extended Grunwald-Winstein equations in the correlation of the rates of solvolysis of highly hindered tertiary alkyl derivatives,” Current Organic Chemistry, vol. 14, pp. 1037–1049, 2010.
  20. A. Goossens, S. Huygens, L. Stoskute, and J.-P. Lepoittevin, “Primary sensitization to cinnamyl chloride in an operator of a pharmaceutical company,” Contact Dermatitis, vol. 55, no. 6, pp. 364–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-I. Hayami, N. Tanaka, and A. Kaji, “SN2 Reactions in dipolar aprotic solvents. III. Chlorine isotopic exchange reactions of cinnamyl chlorides and 3-aryl-2-propynyl chlorides. Effect of the unsaturated group adjacent to the reaction center,” Bulletin of the Chemical Society of Japan, vol. 46, pp. 954–959, 1973.
  22. J.-I. Hayami, N. Hihara, N. Tanaka, and A. Kaji, “SN2 reactions in dipolar aprotic solvents. VII. Kinetic and equilibrium secondary?-deuterium isotope effects in chlorine isotopic exchange reactions of substituted chloromethanes in acetonitrile,” Bulletin of the Chemical Society of Japan, vol. 52, pp. 831–835, 1979.
  23. I. S. Koo, S. K. An, K. Yang, I. Lee, and T. W. Bentley, “Correlation of the rates of solvolyses of cinnamyl chloride,” Journal of Physical Organic Chemistry, vol. 15, no. 11, pp. 758–764, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. I. S. Koo, J. M. Cho, S. K. An, K. Yang, J. P. Lee, and I. Lee, “Correlation of the rates of solvolyses of cinnamyl bromide,” Bulletin of the Korean Chemical Society, vol. 24, no. 4, pp. 431–436, 2003. View at Scopus
  25. T. W. Bentley, G. Llewellyn, and Z. H. Ryu, “Solvolytic reactions in fluorinated alcohols. Role of nucleophilic and other solvation effects,” Journal of Organic Chemistry, vol. 63, no. 14, pp. 4654–4659, 1998. View at Scopus
  26. D. K. Brown, J. L. Dean, W. X. Lopez, and C. Ji, “Electrochemical reduction of cinnamyl bromide at carbon cathodes in acetonitrile: a further mechanistic study,” Journal of the Electrochemical Society, vol. 156, no. 10, pp. F123–F127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Marona, N. Szkaradek, E. Karczewska et al., “Antifungal and antibacterial activity of the newly synthesized 2-xanthone derivatives,” Archiv der Pharmazie, vol. 342, no. 1, pp. 9–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Senff-Ribeiro, A. Echevarria, E. F. Silva, C. R. C. Franco, S. S. Veiga, and M. B. M. Oliveira, “Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma,” British Journal of Cancer, vol. 91, no. 2, pp. 297–304, 2004. View at Scopus
  29. I. S. Koo, J.-S. Kim, S. K. An, K. Yang, and I. Lee, “Kinetic studies on solvolyses of substituted cinnamoyl chlorides in alcohol-water mixtures,” Journal of the Korean Chemical Society, vol. 43, pp. 527–534, 1999.
  30. D. N. Kevill and M. J. D'Souza, “Concerning the extents of nucleophilic participation in solvolyses of p-methoxybenzyl halides,” Journal of Chemical Research S, no. 5, pp. 336–337, 1999. View at Scopus
  31. D. N. Kevill and M. J. D'Souza, “Correlation of the rates of solvolysis of benzoyl chloride and derivatives using extended forms of the Grunwald-Winstein equation,” Journal of Physical Organic Chemistry, vol. 15, no. 12, pp. 881–888, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Kim, G. Han, L. S. Jeong, H.-J. Park, O. P. Zee, and Y. H. Jung, “Study of the stability of carbocations by chlorosulfonyl isocyanate reaction with ethers,” Tetrahedron, vol. 58, no. 22, pp. 4395–4402, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. I. S. Koo, K. Yang, D. H. Kang, H. J. Park, K. Kang, and I. Lee, “Transition-state variation in the solvolyses of phenyl chlorothionoformate in alcohol-water mixtures,” Bulletin of the Korean Chemical Society, vol. 20, no. 5, pp. 577–580, 1999. View at Scopus
  34. D. N. Kevill, F. Koyoshi, and M. J. D'Souza, “Correlations of the specific rates of solvolysis of aromatic carbamoyl chlorides, chloroformates, chlorothionoformates, and chlorodithioformates revisited,” International Journal of Molecular Sciences, vol. 8, no. 4, pp. 346–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. W. Bentley, “Structural effects on the solvolytic reactivity of carboxylic and sulfonic acid chlorides. Comparisons with gas-phase data for cation formation,” Journal of Organic Chemistry, vol. 73, no. 16, pp. 6251–6257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Artico, R. D. Santo, R. Costi et al., “Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling,” Journal of Medicinal Chemistry, vol. 41, no. 21, pp. 3948–3960, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. J. P. Richard and W. P. Jencks, “Reactions of substituted 1-phenylethyl carbocations with alcohols and other nucleophilic reagents,” Journal of the American Chemical Society, vol. 106, no. 5, pp. 1373–1383, 1984. View at Scopus
  38. J. P. Richard, M. M. Toteva, and T. L. Amyes, “What is the stabilizing interaction with nucleophilic solvents in the transition state for solvolysis of tertiary derivatives: nucleophilic solvent participation or nucleophilic solvation?” Organic Letters, vol. 3, no. 14, pp. 2225–2228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. S. P. McManus, T. Crutcher, R. W. Naumann et al., “Selectivity in the solvolysis in binary solvents of 1-adamantyl derivatives bearing leaving groups that depart as neutral molecules,” Journal of Organic Chemistry, vol. 53, no. 18, pp. 4401–4403, 1988. View at Scopus
  40. D. N. Kevill and S. W. Anderson, “Essentially solvent-independent rates of solvolysis of the 1-adamantyldimethylsulfonium ion. Implications regarding nucleophilic assistance in solvolyses of tert-butyl derivatives and the NKL solvent nucleophilicity scale,” Journal of the American Chemical Society, vol. 108, no. 7, pp. 1579–1585, 1986. View at Scopus
  41. T. W. Bentley, “Nucleophilicites of aqueous, alcoholic, and acidic media,” Advances in Chemistry, vol. 15, pp. 255–268, 1987.
  42. D. N. Kevill, Z. H. Ryu, M. A. Niedermeyer, F. Koyoshi, and M. J. D'Souza, “Rate and product studies in the solvolyses of methanesulfonic anhydride and a comparison with methanesulfonyl chloride solvolyses,” Journal of Physical Organic Chemistry, vol. 20, no. 6, pp. 431–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. D. N. Kevill and B. Miller, “Application of the NT solvent nucleophilicity scale to attack at phosphorus: solvolyses of N,N,N,N-tetramethyldiamidophosphorochloridate,” Journal of Organic Chemistry, vol. 67, no. 21, pp. 7399–7406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. B. Kyong, S. H. Ryu, and D. N. Kevill, “Rate and product studies of solvolyses of benzyl fluoroformate,” International Journal of Molecular Sciences, vol. 7, no. 7, pp. 186–196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. H. J. Koh, S. J. Kang, and D. N. Kevill, “Reaction mechanism studies of solvolytic displacement of chloride from phosphorus,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 183, no. 2-3, pp. 364–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. J. D'Souza, L. Yaakoubd, S. L. Mlynarski, and D. N. Kevill, “Concerted solvent processes for common sulfonyl chloride precursors used in the synthesis of sulfonamide-based drugs,” International Journal of Molecular Sciences, vol. 9, no. 5, pp. 914–925, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. H. Seong, J. B. Kyong, Y. H. Lee, and D. N. Kevill, “Corrrelation of the specific rates of solvolysis of ethyl fluoroformate using the extended grunwald-winstein equation,” International Journal of Molecular Sciences, vol. 10, no. 3, pp. 929–941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. J. D'Souza, Z. H. Ryu, B.-C. Park, and D. N. Kevill, “Correlation of the rates of solvolysis of acetyl chloride and α-substituted derivatives,” Canadian Journal of Chemistry, vol. 86, no. 5, pp. 359–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. J. D'Souza, K. E. Shuman, S. E. Carter, and D. N. Kevill, “Extended Grunwald-Winstein analysis—LFER used to gauge solvent effects in p-nitrophenyl chloroformate solvolysis,” International Journal of Molecular Sciences, vol. 9, no. 11, pp. 2231–2242, 2008. View at Publisher · View at Google Scholar · View at Scopus