About this Journal Submit a Manuscript Table of Contents
Organic Chemistry International
Volume 2012 (2012), Article ID 153159, 5 pages
http://dx.doi.org/10.1155/2012/153159
Research Article

CES as an Efficient Natural Catalyst for Synthesis of Schiff Bases under Solvent-Free Conditions: An Innovative Green Approach

Organic Research Laboratory, Department of Chemistry, Padmabhushan Dr. Vasantraodada Patil College, Sangli District, Tasgaon 416312, India

Received 3 September 2012; Revised 16 November 2012; Accepted 18 November 2012

Academic Editor: William Setzer

Copyright © 2012 Suresh Patil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. W. V. Cave, C. L. Raston, and J. L. Scott, “Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility,” Chemical Communications, no. 21, pp. 2159–2169, 2001. View at Scopus
  2. C. Imrie, P. Kleyi, V. O. Nyamori, T. I. A. Gerber, D. C. Levendis, and J. Look, “Further solvent-free reactions of ferrocenylaldehydes: synthesis of 1,1′-ferrocenyldiimines and ferrocenylacrylonitriles,” Journal of Organometallic Chemistry, vol. 692, no. 16, pp. 3443–3453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. O. Metzger, “Solvent-free organic syntheses,” Angewandte Chemie—International Edition, vol. 37, no. 21, pp. 2975–2978, 1998. View at Publisher · View at Google Scholar
  4. C. J. Li and T. H. Chan, “Organic syntheses using indium-mediated and catalyzed reactions in aqueous media,” Tetrahedron, vol. 55, no. 37, pp. 11149–11176, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. T. P. Loh, J. M. Huang, S. H. Goh, and J. J. Vittal, “Aldol reaction under solvent-free conditions: highly stereoselective synthesis of 1,3-amino alcohols,” Organic Letters, vol. 2, no. 9, pp. 1291–1294, 2000. View at Scopus
  6. R. S. Varma and V. V. Namboodiri, “Solvent-free preparation of ionic liquids using a household microwave oven,” Pure and Applied Chemistry, vol. 73, no. 8, pp. 1309–1313, 2001. View at Scopus
  7. K. Tanaka and F. Toda, “Solvent-free organic synthesis,” Chemical Reviews, vol. 100, no. 3, pp. 1025–1074, 2000. View at Scopus
  8. C. Unaleroglu, B. Temelli, and T. Hokelek, “Conformational and structural analysis of N-N′-bis(4-methoxybenzylidene)ethylenediamine,” Journal of Molecular Structure, vol. 570, no. 1–3, pp. 91–95, 2001. View at Publisher · View at Google Scholar
  9. C. H. Li and T. C. Chang, “Studies on thermotropic liquid crystalline polymers-Part II. Synthesis and properties of poly(azomethine-ether),” European Polymer Journal, vol. 27, no. 1, pp. 35–39, 1991.
  10. P. J. Blower, “Small coordination complexes as radiopharmaceuticals for cancer targeting,” Transition Metal Chemistry, vol. 23, no. 1, pp. 109–112, 1997. View at Scopus
  11. G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press, New York, NY, USA, 1987.
  12. P. H. Wang, J. G. Keck, E. J. Lien, and M. M. C. Lai, “Design, synthesis, testing, and quantitative structure-activity relationship analysis of substituted salicylaldehyde Schiff bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus,” Journal of Medicinal Chemistry, vol. 33, no. 2, pp. 608–614, 1990. View at Scopus
  13. A. W. Tai, E. J. Lien, M. M. C. Lai, and T. A. Khwaja, “Novel N-hydroxyguanidine derivatives as anticancer and antiviral agents,” Journal of Medicinal Chemistry, vol. 27, no. 2, pp. 236–238, 1984. View at Scopus
  14. N. Alizadeh, S. Ershad, H. Naeimi, H. Sharghi, and M. Shamsipur, “Synthesis of a new naphthol-derivative salen and spectrophotometric study of the thermodynamics and kinetics of its complexation with copper(II) ion in binary dimethylsulfoxide-acetonitrile mixtures,” Polish Journal of Chemistry, vol. 73, no. 6, pp. 915–925, 1999. View at Scopus
  15. D. Sanz, A. Perona, R. M. Claramunt, and J. Elguero, “Synthesis and spectroscopic properties of Schiff bases derived from 3-hydroxy-4-pyridinecarboxaldehyde,” Tetrahedron, vol. 61, no. 1, pp. 145–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Fernández-G, F. Del Rio-Portilla, B. Quiroz-García, R. A. Toscano, and R. Salcedo, “The structures of some ortho-hydroxy Schiff base ligands,” Journal of Molecular Structure, vol. 561, no. 1–3, pp. 197–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Sclatani, M. T. Maranto, T. M. Sisk, and S. A. V. Arman, “Terminal alkylation of linear polyamines,” Journal of Organic Chemistry, vol. 61, no. 9, pp. 3221–3222, 1996. View at Publisher · View at Google Scholar
  18. R. Ando, T. Yagyu, and M. Maeda, “Characterization of oxovanadium (IV)-Schiff-base complexes and those bound on resin, and their use in sulfide oxidation,” Inorganica Chimica Acta, vol. 357, no. 8, pp. 2237–2244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Sharghi and K. Niknam, “Conversion of alcohols into amides using alumina-methanesulfonic acid (AMA) in nitrile solvents,” Iranian Journal of Chemistry and Chemical Engineering, vol. 18, no. 1, pp. 36–39, 1999. View at Scopus
  20. K. Ambroziak, R. Pelech, E. Milchert, T. Dziembowska, and Z. Rozwadowski, “New dioxomolybdenum(VI) complexes of tetradentate Schiff base as catalysts for epoxidation of olefins,” Journal of Molecular Catalysis A, vol. 211, no. 1-2, pp. 9–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Suga, T. Fudo, and T. Ibata, “Cu(I)-binaphthyldiimine catalyzed asymmetric cyclopropanation of olefin with diazoacetate,” Synlett, no. 8, pp. 933–935, 1998. View at Scopus
  22. Z. H. Yang, L. X. Wang, Z. H. Zhou, Q. L. Zhou, and C. C. Tang, “Synthesis of new chiral Schiff bases and their application in the asymmetric trimethylsilylcyanation of aromatic aldehydes,” Tetrahedron Asymmetry, vol. 12, no. 11, pp. 1579–1582, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. G. J. Kim and J. H. Shin, “Application of new unsymmetrical chiral Mn(III), Co(II,III) and Ti(IV) salen complexes in enantioselective catalytic reactions,” Catalysis Letters, vol. 63, no. 1-2, pp. 83–90, 1999. View at Scopus
  24. C. Sasaki, K. Nakajima, and M. Kojima, “Preparation and characterization of optically active quadridentate Schiff base-titanium (IV) complexes and the catalytic properties of these complexes on asymmetric oxidation of methyl phenyl sulfide with organic hydro peroxides,” Bulletin of the Chemical Society Japan, vol. 64, no. 4, pp. 1318–1324, 1991. View at Publisher · View at Google Scholar
  25. W. Adam, R. T. Fell, V. R. Stegmann, and C. R. Saha-Möller, “Synthesis of optically active α-hydroxy carbonyl compounds by the catalytic, enantioselective oxidation if silyl enol ethers and ketene acetals with (salen)manganese(III) complexes,” Journal of the American Chemical Society, vol. 120, no. 4, pp. 708–714, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Ovitt and G. W. Coates, “Stereoselective ring-opening polymerization of meso-lactide: synthesis of syndiotactic poly(lactic acid),” Journal of the American Chemical Society, vol. 121, no. 16, pp. 4072–4073, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Shamsipur, S. Sadeghi, H. Naeimi, and H. Sharghi, “Iodide ion-selective PVC membrane electrode based on a recently synthesized salen-Mn(II) complex,” Polish Journal of Chemistry, vol. 74, no. 2, pp. 231–238, 2000. View at Scopus
  28. N. Alizadeh, S. Ershad, H. Naeimi, H. Sharghi, and M. Shamsipur, “Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base,” Fresenius' Journal of Analytical Chemistry, vol. 365, no. 6, pp. 511–515, 1999. View at Scopus
  29. M. M. Ardakany, A. A. Ensafi, H. Naeimi, A. Dastanpour, and A. Shamlli, “Highly selective lead(II) coated-wire electrode based on a new Schiff base,” Sensors and Actuators B, vol. 96, no. 1-2, pp. 441–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Khorrami, H. Naeimi, and A. R. Fakhari, “Determination of nickel in natural waters by FAAS after sorption on octadecyl silica membrane disks modified with a recently synthesized Schiff's base,” Talanta, vol. 64, no. 1, pp. 13–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Shamsipur, M. Yousefi, M. Hosseini, M. R. Ganjali, H. Sharghi, and H. Naeimi, “A Schiff base complex of Zn(II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion,” Analytical Chemistry, vol. 73, no. 13, pp. 2869–2874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Fakhari, A. R. Khorrami, and H. Naeimi, “Synthesis and analytical application of a novel tetradentate N2O2 Schiff base as a chromogenic reagent for determination of nickel in some natural food samples,” Talanta, vol. 66, no. 4, pp. 813–817, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Shamsipur, A. R. Ghiasvand, H. Sharghi, and H. Naeimi, “Solid phase extraction of ultra trace copper(II) using octadecyl silica membrane disks modified by a naphthol-derivative Schiff's base,” Analytica Chimica Acta, vol. 408, no. 1-2, pp. 271–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Gao and C. Xu, “Synthesis of dimethyl carbonate over waste eggshell catalyst,” Catalysis Today, vol. 190, no. 1, pp. 107–111, 2012. View at Publisher · View at Google Scholar
  35. H. Schiff, “Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen,” Justus Liebigs Annalen der Chemie, vol. 131, no. 1, pp. 118–119, 1864.
  36. R. B. Moffett and N. Rabjohn, Organic Synthesis, vol. 4, John Wiley & Sons, New York, NY, USA, 1963.
  37. F. H. Westheimer and K. Taguchi, “Catalysis by molecular sieves in the preparation of ketimines and enamines,” Journal of Organic Chemistry, vol. 36, no. 11, pp. 1570–1572, 1971. View at Scopus
  38. B. E. Love and J. Ren, “Synthesis of sterically hindered imines,” Journal of Organic Chemistry, vol. 58, no. 20, pp. 5556–5557, 1993. View at Scopus
  39. A. Vass, J. Dudás, and R. S. Varma, “Solvent-free synthesis of N-sulfonylimines using microwave irradiation,” Tetrahedron Letters, vol. 40, no. 27, pp. 4951–4954, 1999. View at Publisher · View at Google Scholar
  40. M. B. Deshmukh, S. S. Patil, S. D. Jadhav, and P. B. Pawar, “Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group,” Synthetic Communications, vol. 42, no. 8, pp. 1177–1183, 2012. View at Publisher · View at Google Scholar
  41. S. Patil, S. D. Jadhav, and M. B. Deshmukh, “Natural acid catalyzed multi-component reactions as a green approach,” Archives of Applied Science Research, vol. 3, no. 1, pp. 203–208, 2011.
  42. H. Naeimi and K. Rabiei, “Montmorillonite as a heterogeneous catalyst in the efficient, mild and one pot synthesis of Schiff bases under solvent-free conditions,” Journal of the Chinese Chemical Society, vol. 59, no. 2, pp. 208–212, 2012. View at Publisher · View at Google Scholar
  43. L. Ravishankar, S. A. Patwe, N. Gosarani, and A. Roy, “Cerium(III)-catalyzed synthesis of schiff bases: a green approach,” Synthetic Communications, vol. 40, no. 21, pp. 3177–3180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Naeimi, F. Salimi, and K. Rabiei, “Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions,” Journal of Molecular Catalysis A, vol. 260, no. 1-2, pp. 100–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. Chakraborti, S. Bhagat, and S. Rudrawar, “Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones,” Tetrahedron Letters, vol. 45, no. 41, pp. 7641–7644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. G. C. Look, “Trimethylorthoformate: a mild and effective dehydrating reagentfor solution and solid phase imine formation,” Tetrahedron Letters, vol. 36, no. 17, pp. 2937–2940, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. F. T. Boullet, “A simple, convenient and mild of imines on alumina surface without solvent,” SynthesisSynthesis, no. 6-7, pp. 679–681, 1985. View at Publisher · View at Google Scholar
  48. A. Y. Vibhute, S. S. Mokle, Y. S. Nalwar, Y. B. Vibhute, and V. M. Gurav, “An efficient and operationally simple synthesis of some new Schiff bases using grinding technique,” Bulletin of the Catalysis Society of India, vol. 8, pp. 164–168, 2009.
  49. S. J. Wadher, M. P. Puranik, N. A. Karande, and P. G. Yeole, “Synthesis and biological evaluation of Schiff base of dapsone and their derivative as antimicrobial agents,” International Journal of PharmTech Research, vol. 1, no. 1, pp. 22–33, 2009. View at Scopus
  50. R. S. Varma, R. Dahiya, and S. Kumar, “Clay catalyzed synthesis of imines and enamines under solvent-free conditions using microwave irradiation,” Tetrahedron Letters, vol. 38, no. 12, pp. 2039–2042, 1997. View at Publisher · View at Google Scholar · View at Scopus