About this Journal Submit a Manuscript Table of Contents
Organic Chemistry International
Volume 2012 (2012), Article ID 206025, 6 pages
http://dx.doi.org/10.1155/2012/206025
Research Article

Complexation of Copper(II) with Humic Acids Studied by Ultrasound Spectrometry

Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic

Received 23 March 2012; Accepted 14 May 2012

Academic Editor: Dipakranjan Mal

Copyright © 2012 Martina Klučáková. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. W. Chang, M. K. Wang, and C. Lin, “Adsorption of copper in the different sorbent/water ratios of soil systems,” Water, Air, and Soil Pollution, vol. 138, no. 1–4, pp. 199–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Shi, H. E. Allen, M. T. Grassi, and H. Y. Ma, “Modeling copper partitioning in surface waters,” Water Research, vol. 32, no. 12, pp. 3756–3764, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. T. Grassi, B. Shi, and H. E. Allen, “Partition of copper between dissolved and particulate phases using aluminum oxide as an aquatic model phase: effects of pH, solids and organic matter,” Journal of the Brazilian Chemical Society, vol. 11, no. 5, pp. 516–524, 2000. View at Scopus
  4. A. Fitch, F. J. Stevenson, and Y. Chen, “Complexation of Cu(II) with a soil humic acid: response characteristics of the Cu(II) ion-selective electrode and ligand concentration effects,” Organic Geochemistry, vol. 9, no. 3, pp. 109–116, 1986. View at Scopus
  5. A. Piccolo, S. Nardi, and G. Concheri, “Micelle-like conformation of humic substances as revealed by size exclusion chromatography,” Chemosphere, vol. 33, no. 4, pp. 595–602, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Conte and A. Piccolo, “Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules,” Environmental Science and Technology, vol. 33, no. 10, pp. 1682–1690, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Simpson, W. L. Kingery, M. H. B. Hayes et al., “Molecular structures and associations of humic substances in the terrestrial environment,” Naturwissenschaften, vol. 89, no. 2, pp. 84–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Christl, A. Metzger, I. Heidmann, and R. Kretzschmar, “Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding,” Environmental Science and Technology, vol. 39, no. 14, pp. 5319–5326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Perdue and L. A. Carreira, “Modeling competitive binding of protons and metal ions by humic substances,” in Biogeochemistry of Trace Metals, D. C. Adriano, Y.S. Chen, S. S. Yang, and I. K. Iskandar, Eds., pp. 381–401, Applied Science, Norwood, NJ, USA, 1997.
  10. V. A. Buckin, B. I. Kankiya, D. Rentzeperis, and L. A. Marky, “Mg2+ recognizes the sequence of DNA through its hydration shell,” Journal of the American Chemical Society, vol. 116, no. 21, pp. 9423–9429, 1994. View at Scopus
  11. B. I. Kankia, T. Funck, H. Uedaira, and V. A. Buckin, “Volume and compressibility effects in the formation of metal-EDTA complexes,” Journal of Solution Chemistry, vol. 26, no. 9, pp. 877–888, 1997. View at Scopus
  12. F. Alba, G. M. Crawley, J. Fatkin, D. M. J. Higgs, and P. G. Kippax, “Acoustic spectroscopy as a technique for the particle sizing of high concentration colloids, emulsions and suspensions,” Colloids and Surfaces A, vol. 153, no. 1–3, pp. 495–502, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Kudryashov, C. Smyth, B. O'Driscoll, and V. Buckin, “High-resolution ultrasonic spectroscopy: for analysis of chemical reactions in real time,” Spectroscopy, vol. 18, no. 10, pp. 26–32, 2003. View at Scopus
  14. D. P. Kharakoz and A. P. Sarvazyan, “Hydrational and intrinsic compressibilities of globular proteins,” Biopolymers, vol. 33, no. 1, pp. 11–26, 1993. View at Scopus
  15. M. Klučáková and M. Pekař, “Behaviour of partially soluble humic acids in aqueous suspension,” Colloids and Surfaces A, vol. 318, no. 1–3, pp. 106–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Peuravuori, P. Žbánková, and K. Pihlaja, “Aspects of structural features in lignite and lignite humic acids,” Fuel Processing Technology, vol. 87, no. 9, pp. 829–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Alvarez-Puebla, C. Valenzuela-Calahorro, and J. J. Garrido, “Retention of Co(II), Ni(II), and Cu(II) on a purified brown humic acid. Modeling and characterization of the sorption process,” Langmuir, vol. 20, no. 9, pp. 3657–3664, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. McElmurry, D. T. Long, and T. C. Voice, “Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction,” Applied Geochemistry, vol. 25, no. 5, pp. 650–660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Klučáková and M. Pekař, “New model for equilibrium sorption of metal ions on solid humic acids,” Colloids and Surfaces A, vol. 286, no. 1–3, pp. 126–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Baker and F. Khalili, “Comparative study of binding strengths and thermodynamic aspects of Cu(II) and Ni(II) with humic acid by Schubert's ion-exchange method,” Analytica Chimica Acta, vol. 497, no. 1-2, pp. 235–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. K. Pandey, S. D. Pandey, V. Misra, and P. N. Viswanathan, “Formation of soluble complexes of metals with humic acid and its environmental significance,” Chemistry and Ecology, vol. 16, no. 4, pp. 269–282, 1999. View at Scopus
  22. K. Murray and P. W. Linder, “Fulvic acids—structure and metal-binding. 1. A random molecular model,” Journal of Soil Science, vol. 34, no. 3, pp. 511–523, 1983. View at Publisher · View at Google Scholar
  23. K. Murray and P. W. Linder,, “Fulvic acids—structure and metal-binding. 2. Predominant metal-binding sites,” Journal of Soil Science, vol. 35, no. 2, pp. 217–222, 1984. View at Publisher · View at Google Scholar
  24. J. W. J. van Schaik, D. B. Kleja, and J. P. Gustafsson, “Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution,” Geochimica et Cosmochimica Acta, vol. 74, no. 4, pp. 1391–1406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Manceau and A. Matynia, “The nature of Cu bonding to natural organic matter,” Geochimica et Cosmochimica Acta, vol. 74, no. 9, pp. 2556–2580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. N. D. Bryan, V. J. Robinson, F. R. Livens, N. Hesketh, M. N. Jones, and J. R. Lead, “Metal-humic interactions: a random structural modelling approach,” Geochimica et Cosmochimica Acta, vol. 61, no. 4, pp. 805–820, 1997. View at Scopus
  27. J. P. Croue, M. F. Benedetti, D. Violleau, and J. A. Leenheer, “Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site,” Environmental Science and Technology, vol. 37, no. 2, pp. 328–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. E. Gregor, H. K. J. Powell, and R. M. Town, “Metal-fulvic acid complexing: evidence supporting an aliphatic carboxylate mode of coordination,” Science of the Total Environment, vol. 81-82, pp. 597–606, 1989. View at Scopus
  29. J. E. Gregor, H. K. J. Powell, and R. M. Town, “Evidence for aliphatic mixed mode coordination in copper(II) fulvic acid complexes,” Journal of Soil Science, vol. 40, no. 3, pp. 661–673, 1989. View at Scopus
  30. S. Li, K. Kydralieva, N. Kulikova, I. Perminova, and S. Jorobekova, “Synthesis, biological activity and detoxifying properties of carbonylated humic substances,” in From Molecular Understanding to Innovative Applications of Humic Substances, I. Perminova and N. Kulikova, Eds., vol. 2, pp. 563–566, Humus Sapiens, Moscow, Russia, 2008.
  31. P. A. Waller and W. F. Pickering, “The lability of copper ions sorbed on humic acid,” Chemical Speciation & Bioavailability, vol. 2, pp. 127–138, 1990.
  32. R. J. Urick, “A sound velocity method for determining the compressibility of finely divided substances,” Journal of Applied Physics, vol. 18, no. 11, pp. 983–987, 1947. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Hayase and H. Tsubota, “Sedimentary humic acid and fulvic acid as surface active substances,” Geochimica et Cosmochimica Acta, vol. 47, no. 5, pp. 947–952, 1983. View at Scopus
  34. M. Hosse and K. J. Wilkinson, “Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength,” Environmental Science and Technology, vol. 35, no. 21, pp. 4301–4306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Alvarez-Puebla, C. Valenzuela-Calahorro, and J. J. Garrido, “Cu(II) retention on a humic substance,” Journal of Colloid and Interface Science, vol. 270, no. 1, pp. 47–55, 2004. View at Publisher · View at Google Scholar · View at Scopus