About this Journal Submit a Manuscript Table of Contents
Obstetrics and Gynecology International
Volume 2012 (2012), Article ID 602720, 10 pages
http://dx.doi.org/10.1155/2012/602720
Review Article

Epigenetics and Breast Cancers

Department of Physiology & Biophysics, The Howard University College of Medicine, Washington, DC 20059, USA

Received 18 July 2011; Accepted 9 January 2012

Academic Editor: Shi-Wen Jiang

Copyright © 2012 An T. Vo and Richard M. Millis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Key, P. K. Verkasalo, and E. Banks, “Epidemiology of breast cancer,” Lancet Oncology, vol. 2, no. 3, pp. 133–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. K. McPherson, C. M. Steel, and J. M. Dixon, “ABC of breast diseases: breast cancer-epidemiology, risk factors, and genetics,” British Medical Journal, vol. 321, no. 7261, pp. 624–628, 2000. View at Scopus
  3. J. Veeck and M. Esteller, “Breast cancer epigenetics: from DNA methylation to microRNAs,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 1, pp. 5–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Bird, “CpG-rich islands and the function of DNA methylation,” Nature, vol. 321, no. 6067, pp. 209–213, 1986. View at Scopus
  5. R. M. Millis, “Epigenetics and hypertension,” Current Hypertension Reports, vol. 13, no. 11, pp. 21–28, 2011. View at Scopus
  6. M. Esteller, “CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future,” Oncogene, vol. 21, no. 35, pp. 5427–5440, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Nguyen, G. Liang, T. T. Nguyen et al., “Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells,” Journal of the National Cancer Institute, vol. 93, no. 19, pp. 1465–1472, 2001. View at Scopus
  8. S. M. Meeran, A. Ahmed, and T. O. Tollefsbol, “Epigenetic targets of bioactive dietary components for cancer prevention and therapy,” Clinical Epigenetics, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Dworkin, T. H. M. Huang, and A. E. Toland, “Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment,” Seminars in Cancer Biology, vol. 19, no. 3, pp. 165–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. B. Baylin, J. G. Herman, J. R. Graff, P. M. Vertino, and J. P. Issa, “Alterations in DNA methylation: a fundamental aspect of neoplasia,” Advances in Cancer Research, vol. 72, pp. 141–196, 1997. View at Scopus
  11. S. Mishra, S. P. Dwivedi, and R. B. Singh, “A review on epigenetic effect of heavy metal carcinogens on human health,” The Open Nutraceuticals Journal, vol. 3, pp. 188–193, 2010.
  12. H. Cedar and Y. Bergman, Epigenetic Silencing during Early Lineage Commitment, Harvard Stem Cell Institute, Cambridge, Mass, USA, 2009, StemBook, http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=stembook&part=epigeneticsilencing.
  13. R. Michaelson-Cohen, I. Keshet, R. Straussman, M. Hecht, H. Cedar, and U. Beller, “Genome-wide de novo methylation in epithelial ovarian cancer,” International Journal of Gynecological Cancer, vol. 21, no. 2, pp. 269–279, 2011. View at Publisher · View at Google Scholar
  14. R. Straussman, D. Nejman, D. Roberts et al., “Developmental programming of CpG island methylation profiles in the human genome,” Nature Structural and Molecular Biology, vol. 16, no. 5, pp. 564–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Dedeurwaerder, D. Fumagalli, and F. Fuks, “Unravelling the epigenomic dimension of breast cancers,” Current Opinion in Oncology, vol. 23, no. 6, pp. 559–565, 2011. View at Publisher · View at Google Scholar
  16. C. Thomas and J. A. Gustafsson, “The different roles of ER subtypes in cancer biology and therapy,” Nature Reviews Cancer, vol. 11, no. 8, pp. 597–608, 2011. View at Publisher · View at Google Scholar
  17. V. K. Hill, C. Ricketts, I. Bieche et al., “Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity,” Cancer Research, vol. 71, no. 8, pp. 2988–2999, 2011. View at Publisher · View at Google Scholar
  18. G. C. Hon, R. D. Hawkins, O. L. Caballero, et al., “Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer,” Genome Research, vol. 22, no. 2, pp. 246–258, 2012.
  19. J. Hatae, N. Takami, H. Lin, A. Honda, and R. Inoue, “17beta-Estradiol-induced enhancement of estrogen receptor biosynthesis via MAPK pathway in mouse skeletal muscle myoblasts,” The Journal of Physiological Sciences, vol. 59, no. 3, pp. 181–190, 2009.
  20. J. G. Moggs and G. Orphanides, “Estrogen receptors: orchestrators of pleiotropic cellular responses,” EMBO Reports, vol. 2, no. 9, pp. 775–781, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Wu, K. L. Chambliss, S. Oltmann et al., “Non-nuclear estrogen receptor α signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice,” Journal of Clinical Investigation, vol. 120, no. 7, pp. 2319–2330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ali and R. C. Coombes, “Estrogen receptor α in human breast cancer: occurrence and significance,” Journal of Mammary Gland Biology and Neoplasia, vol. 5, no. 3, pp. 271–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Slemenda, C. Longcope, M. Peacock, S. Hui, and C. C. Johnston, “Sex steroids, bone mass, and bone loss: a prospective study of pre-, peri-, and postmenopausal women,” Journal of Clinical Investigation, vol. 97, no. 1, pp. 14–21, 1996. View at Scopus
  24. M. Clemons and P. Goss, “Estrogen and the risk of breast cancer,” The New England Journal of Medicine, vol. 344, pp. 276–284, 2001.
  25. R. Kaaks, F. Berrino, T. Key et al., “Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC),” Journal of the National Cancer Institute, vol. 97, no. 10, pp. 755–765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Suzuki, T. Rylander-Rudqvist, W. Ye, S. Saji, and A. Wolk, “Body weight and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status among Swedish women: a prospective cohort study,” International Journal of Cancer, vol. 119, no. 7, pp. 1683–1689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Parrella, “Epigenetic signatures in breast cancer: clinical perspective,” Breast Care, vol. 5, no. 2, pp. 66–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. B. Horwitz and W. L. McGuire, “Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor,” Journal of Biological Chemistry, vol. 253, no. 7, pp. 2223–2228, 1978. View at Scopus
  29. J.-W. Gu, E. Young, S. G. Patterson et al., “Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice,” Cancer Biology and Therapy, vol. 11, no. 10, pp. 910–917, 2011. View at Publisher · View at Google Scholar
  30. G. di Leva, P. Gasparini, C. Piovan et al., “MicroRNA cluster 221-222 and estrogen receptor α interactions in breast cancer,” Journal of the National Cancer Institute, vol. 102, no. 10, pp. 706–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Nass, J. G. Herman, E. Gabrielson et al., “Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer,” Cancer Research, vol. 60, no. 16, pp. 4346–4348, 2000. View at Scopus
  32. M. Kawazu, K. Saso, K. I. Tong et al., “Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development,” PLoS ONE, vol. 6, no. 3, Article ID e17830, 2011. View at Publisher · View at Google Scholar
  33. V. Kumar and P. Chambon, “The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer,” Cell, vol. 55, no. 1, pp. 145–156, 1988. View at Scopus
  34. V. Cappelletti, P. Miodini, G. Di Fronzo, and M. G. Daidone, “Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells,” International Journal of Oncology, vol. 28, no. 5, pp. 1185–1191, 2006.
  35. S.-I. Hayashi, H. Eguchi, K. Tanimoto et al., “The expression and function of estrogen receptor α and β in human breast cancer and its clinical application,” Endocrine-Related Cancer, vol. 10, no. 2, pp. 193–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Zhu, N. E. Davidson, S. Hunter, et al., “Methyl-group dietary intake and risk of breast cancer among African-American women: a case-control study by methylation status of the estrogen receptor alpha genes,” Cancer Causes & Control, vol. 14, no. 9, pp. 827–836, 2003.
  37. N. G. Lopatina, B. F. Vanyushin, G. M. Cronin, and L. A. Poirier, “Elevated expression and altered pattern of activity of DNA methyltransferase in liver tumors of rats fed methyl-deficient diets,” Carcinogenesis, vol. 19, no. 10, pp. 1777–1781, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. Christensen, K. T. Kelsey, S. Zheng et al., “Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake,” PLoS Genetics, vol. 6, no. 7, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. United States Food and Drug Administration, “FDA begins process to remove breast cancer indication from Avastin label,” FDA News Release, http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm237172.htm, July 2010.
  40. A. Dembinska-Kiec, A. Polus, B. Kiec-Wilk et al., “Proangiogenic activity of β-carotene is coupled with the activation of endothelial cell chemotaxis,” Biochimica et Biophysica Acta, vol. 1740, no. 2, pp. 222–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Kiec-Wilk, U. Razny, J. C. Mathers, and A. Dembinska-Kiec, “DNA methylation, induced by β-carotene and arachidonic acid, plays a regulatory role in the pro-angiogenic VEGF-receptor (KDR) gene expression in endothelial cells,” Journal of Physiology and Pharmacology, vol. 60, no. 4, pp. 49–53, 2009. View at Scopus
  42. B. J. Bennion, M. Cosman, F. C. Lightstone et al., “PhIP carcinogenicity in breast cancer: computational and experimental evidence for competitive interactions with human estrogen receptor,” Chemical Research in Toxicology, vol. 18, no. 10, pp. 1528–1536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. K. Creton, H. Zhu, and N. J. Gooderham, “The cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine activates the extracellular signal regulated kinase mitogen-activated protein kinase pathway,” Cancer Research, vol. 67, no. 23, pp. 11455–11462, 2007.
  44. S. N. Lauber, S. Ali, and N. J. Gooderham, “The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity,” Carcinogenesis, vol. 25, no. 12, pp. 2509–2517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Okubo and I. Kano, “Studies on estrogenic activities of food additives with human breast cancer MCF-7 cells and mechanism of estrogenicity by BHA and OPP,” Yakugaku Zasshi, vol. 123, no. 6, pp. 443–452, 2003. View at Scopus
  46. G. M. Williams, “Epigenetic promoting effects of butylated hydroxyanisole,” Food and Chemical Toxicology, vol. 24, no. 10-11, pp. 1163–1166, 1986. View at Scopus
  47. A. Ozaki, Y. Yamaguchi, T. Fujita, K. Kuroda, and G. Endo, “Chemical analysis and genotoxicological safety assessment of paper and paperboard used for food packaging,” Food and Chemical Toxicology, vol. 42, no. 8, pp. 1323–1337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Lopez-Cervantes and P. Paseiro-Losada, “Determination of bisphenol A in, and its migration from, PVC stretch film used for food packaging,” Food Additives and Contaminants, vol. 20, no. 6, pp. 596–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Sun, J. M. Fontaine, I. Bartl, B. Behnam, M. J. Welsh, and R. Benndorf, “Induction of Hsp22 (HspB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells,” Cell Stress and Chaperones, vol. 12, no. 4, pp. 307–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. United States Department of Labor, “Heavy metals,” 2011, http://www.osha.gov/SLTC/metalsheavy/index.html.
  51. National Institute of Health, Dietary Supplement Fact Sheet: Chromium, http://ods.od.nih.gov/factsheets/chromium, 2011.
  52. Y. Li and T. O. Tollefsbol, “Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components,” Current Medicinal Chemistry, vol. 17, no. 20, pp. 2141–2151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. K. L. Kirkpatrick, G. Clark, M. Ghilchick, R. F. Newbold, and K. Mokbel, “hTERT mRNA expression correlates with telomerase activity in human breast cancer,” European Journal of Surgical Oncology, vol. 29, no. 4, pp. 321–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. J. Messina and C. L. Loprinzi, “Soy for breast cancer survivors: a critical review of the literature,” Journal of Nutrition, vol. 131, no. 11, 2001. View at Scopus
  55. K. B. Bouker and L. Hilakivi-Clarke, “Genistein: does it prevent or promote breast cancer?” Environmental Health Perspectives, vol. 108, no. 8, pp. 701–708, 2000. View at Scopus
  56. H. G. Shertzer, A. Puga, C. Chang, et al., “Inhibition of CYP1A1 enzyme activity in mouse hepatoma cell culture by soybean isoflavones,” Chemical and Biological Interactions, vol. 123, no. 1, pp. 31–49, 1999.
  57. J. L. Stanford, L. J. Herrinton, S. M. Schwartz, and N. S. Weiss, “Breast cancer incidence in Asian migrants to the United States and their descendants,” Epidemiology, vol. 6, no. 2, pp. 181–183, 1995. View at Scopus
  58. D. B. Thomas and M. R. Karagas, “Cancer in first and second generation Americans,” Cancer Research, vol. 47, no. 21, pp. 5771–5776, 1987. View at Scopus
  59. D. M. Parkin, S. L. Whelan, J. Ferlay, L. Raymond, and J. Young, Cancer Incidence in Five Continents, vol. 7 of Publications No 143, IARC Scientific Publication, Lyon, France, 1997.
  60. K. Hirose, N. Imaeda, Y. Tokudome et al., “Soybean products and reduction of breast cancer risk: a case-control study in Japan,” British Journal of Cancer, vol. 93, no. 1, pp. 15–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. J. Messina, V. Persky, K. D. Setchell, and S. Barnes, “Soy intake and cancer risk: a review of the in vitro and in vivo data,” Nutrition and Cancer, vol. 21, no. 2, pp. 113–131, 1994.
  62. S. Yamamoto, T. Sobue, M. Kobayashi et al., “Soy, isoflavones, and breast cancer risk in Japan,” Journal of the National Cancer Institute, vol. 95, no. 12, pp. 906–913, 2003. View at Scopus