About this Journal Submit a Manuscript Table of Contents
Obstetrics and Gynecology International
Volume 2013 (2013), Article ID 473289, 6 pages
http://dx.doi.org/10.1155/2013/473289
Review Article

Is ICSI Risky?

1School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
2Royal Hospital for Women, Randwick, NSW 2031, Australia

Received 25 October 2012; Accepted 26 January 2013

Academic Editor: Everett Magann

Copyright © 2013 May Y. W. Wong and William L. Ledger. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Palermo, H. Joris, P. Devroey, and A. C. Van Steirteghem, “Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte,” The Lancet, vol. 340, no. 8810, pp. 17–18, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. Centers for Disease Control (CDC), “2009 Success Rates Assisted Reproductive Technologies. American Society for Reproductive Medicine & Society for Assisted Reproductive Technology [Internet],” 2011.
  3. S. Oehninger, “Place of intracytoplasmic sperm injection in management of male infertility,” The Lancet, vol. 357, no. 9274, pp. 2068–2069, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. P. Nagy, J. Liu, H. Joris et al., “The result of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters,” Human Reproduction, vol. 10, no. 5, pp. 1123–1129, 1995. View at Scopus
  5. S. Oehninger, L. Veeck, S. Lanzendorf, M. Maloney, J. Toner, and S. Muasher, “Intracytoplasmic sperm injection: achievement of high pregnancy rates in couples with severe male factor infertility is dependent primarily upon female and not male factors,” Fertility and Sterility, vol. 64, no. 5, pp. 977–981, 1995. View at Scopus
  6. P. Devroey and A. Van Steirteghem, “A review of ten years experience of ICSI,” Human Reproduction Update, vol. 10, no. 1, pp. 19–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. de Mouzon, V. Goossens, S. Bhattacharya et al., “Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE,” Human Reproduction, vol. 25, no. 8, pp. 1851–1862, 2010. View at Publisher · View at Google Scholar
  8. A. N. Andersen, V. Goossens, S. Bhattacharya et al., “Assisted reproductive technology and intrauterine inseminations in Europe, 2005: results generated from European registers by ESHRE,” Human Reproduction, vol. 24, no. 6, pp. 1267–1287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Oehninger and R. G. Gosden, “Should ICSI be the treatment of choice for all cases of in-vitro conception? No, not in light of the scientific data,” Human Reproduction, vol. 17, no. 9, pp. 2237–2242, 2002. View at Scopus
  10. A. Nyboe, E. Carlsen, and A. Loft, “Trends in the use of intracytoplasmatic sperm injection marked variability between countries,” Human Reproduction Update, vol. 14, no. 6, pp. 593–604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Davies, V. M. Moore, K. J. Willson et al., “Reproductive technologies and the risk of birth defects,” The New England Journal of Medicine, vol. 366, no. 19, pp. 1803–1813, 2012. View at Publisher · View at Google Scholar
  12. A. G. Sutcliffe and M. Ludwig, “Outcome of assisted reproduction,” The Lancet, vol. 370, no. 9584, pp. 351–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hansen, C. Bower, E. Milne, N. de Klerk, and J. J. Kurinczuk, “Assisted reproductive technologies and the risk of birth defects: a systematic review,” Human Reproduction, vol. 20, no. 2, pp. 328–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hansen, J. J. Kurinczuk, C. Bower, and S. Webb, “The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization,” The New England Journal of Medicine, vol. 346, no. 10, pp. 725–730, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. R. T. Lie, A. Lyngstadaas, K. H. Ørstavik, L. S. Bakketeig, G. Jacobsen, and T. Tanbo, “Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis,” International Journal of Epidemiology, vol. 34, no. 3, pp. 696–701, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Aittomäki, U. B. Wennerholm, C. Bergh, A. Selbing, J. Hazekamp, and K. G. Nygren, “Safety issues in assisted reproduction technology. Should ICSI patients have genetic testing before treatment? A practical proposition to help patient information,” Human Reproduction, vol. 19, no. 3, pp. 472–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Marchina, L. Imperadori, M. Speziani, U. Omodei, S. Tombesi, and S. Barlati, “Chromosome abnormalities and Yq microdeletions in infertile Italian couples referred for assisted reproductive technique,” Sexual Development, vol. 1, no. 6, pp. 347–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Aitken and C. Krausz, “Oxidative stress, DNA damage and the Y chromosome,” Reproduction, vol. 122, no. 4, pp. 497–506, 2001. View at Scopus
  19. R. J. Aitken and G. N. De Luliis, “Value of DNA integrity assays for fertility evaluation,” Society of Reproduction and Fertility supplement, vol. 65, pp. 81–92, 2007. View at Scopus
  20. B. Rosenbusch and K. Sterzik, “Sperm chromosomes and habitual abortion,” Fertility and Sterility, vol. 56, no. 2, pp. 370–372, 1991. View at Scopus
  21. C. Feng, L. Q. Wang, M. Y. Dong, and H. F. Huang, “Assisted reproductive technology may increase clinical mutation detection in male offspring,” Fertility and Sterility, vol. 90, no. 1, pp. 92–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. M. Kai, K. M. Main, A. N. Andersen, A. Loft, N. E. Skakkebæk, and A. Juul, “Reduced serum testosterone levels in infant boys conceived by intracytoplasmic sperm injection,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 7, pp. 2598–2603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. K. Ludwig, A. Katalinic, U. Thyen, A. G. Sutcliffe, K. Diedrich, and M. Ludwig, “Physical health at 5.5 years of age of term-born singletons after intracytoplasmic sperm injection: results of a prospective, controlled, single-blinded study,” Fertility and Sterility, vol. 91, no. 1, pp. 115–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. V. Neri, T. Takeuchi, and G. D. Palermo, “An update of assisted reproductive technologies results in the United States,” Annals of the New York Academy of Sciences, vol. 1127, pp. 41–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Allen and W. Reardon, “Assisted reproduction technology and defects of genomic imprinting,” BJOG, vol. 112, no. 12, pp. 1589–1594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Lucifero, J. R. Chaillet, and J. M. Trasler, “Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology,” Human Reproduction Update, vol. 10, no. 1, pp. 3–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Dupont, D. R. Armant, and C. A. Brenner, “Epigenetics: definition, mechanisms and clinical perspective,” Seminars in Reproductive Medicine, vol. 27, no. 5, pp. 351–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. U. B. Wennerholm, V. Söderström-Anttila, C. Bergh et al., “Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data,” Human Reproduction, vol. 24, no. 9, pp. 2158–2172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Bonduelle, U. B. Wennerholm, A. Loft et al., “A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception,” Human Reproduction, vol. 20, no. 2, pp. 413–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Källén, O. Finnström, K. G. Nygren, and P. O. Olausson, “In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods,” Birth Defects Research Part A, vol. 73, no. 3, pp. 162–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. U. B. Wennerholm, C. Bergh, L. Hamberger et al., “Incidence of congenital malformations in children born after ICSI,” Human Reproduction, vol. 15, no. 4, pp. 944–948, 2000. View at Scopus
  32. Medicine PCotASfR, “Practice Committee of the Society for Assisted Reproductive Technology: genetic considerations related to intracytoplasmic sperm injection (ICSI),” Fertility and Sterility, vol. 86, p. S103, 2006.
  33. M. Bonduelle, E. Van Assche, H. Joris et al., “Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters,” Human Reproduction, vol. 17, no. 10, pp. 2600–2614, 2002. View at Scopus
  34. E. Basatemur, M. Shevlin, and A. Sutcliffe, “Growth of children conceived by IVF and ICSI up to 12 years of age,” Reproductive BioMedicine Online, vol. 20, no. 1, pp. 144–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Ludwig, A. Katalinic, U. Thyen, A. G. Sutcliffe, K. Diedrich, and M. Ludwig, “Neuromotor development and mental health at 5.5 years of age of singletons born at term after intracytoplasmatic sperm injection ICSI: results of a prospective controlled single-blinded study in Germany,” Fertility and Sterility, vol. 91, no. 1, pp. 125–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Andersson, N. Jørgensen, K. M. Main et al., “Adverse trends in male reproductive health: we may have reached a crucial “tipping point”,” International Journal of Andrology, vol. 31, no. 2, pp. 74–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Hotaling and T. J. Walsh, “Male infertility: a risk factor for testicular cancer,” Nature Reviews Urology, vol. 6, no. 10, pp. 550–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. P. Evenson, Z. Darzynkiewicz, and M. R. Melamed, “Relation of mammalian sperm chromatin heterogeneity to fertility,” Science, vol. 210, no. 4474, pp. 1131–1133, 1980. View at Scopus
  39. M. Bungum, P. Humaidan, A. Axmon et al., “Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome,” Human Reproduction, vol. 22, no. 1, pp. 174–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Giwercman, L. Lindstedt, M. Larsson et al., “Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study,” International Journal of Andrology, vol. 33, no. 1, pp. e221–e227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Spanò, J. P. Bonde, H. I. Hjøllund, H. A. Kolstad, E. Cordelli, and G. Leter, “Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team,” Fertility and Sterility, vol. 73, no. 1, pp. 43–50, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. G. R. Aravindan, J. Bjordahl, L. K. Jost, and D. P. Evenson, “Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis,” Experimental Cell Research, vol. 236, no. 1, pp. 231–237, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. B. L. Sailer, L. K. Jost, and D. P. Evenson, “Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay,” Journal of Andrology, vol. 16, no. 1, pp. 80–87, 1995. View at Scopus
  44. R. Henkel, M. Hajimohammad, T. Stalf et al., “Influence of deoxyribonucleic acid damage on fertilization and pregnancy,” Fertility and Sterility, vol. 81, no. 4, pp. 965–972, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Tesarik, E. Greco, and C. Mendoza, “Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation,” Human Reproduction, vol. 19, no. 3, pp. 611–615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. F. Martins, M. N. Dode, S. N. Báo, and R. Rumpf, “The use of the acridine orange test and the TUNEL assay to assess the integrity of freeze-dried bovine spermatozoa DNA,” Genetics and Molecular Research, vol. 6, no. 1, pp. 94–104, 2007. View at Scopus
  47. S. E. M. Lewis, M. O'Connell, M. Stevenson, L. Thompson-Cree, and N. McClure, “An algorithm to predict pregnancy in assisted reproduction,” Human Reproduction, vol. 19, no. 6, pp. 1385–1394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. M. Hughes, S. E. M. Lewis, V. J. McKelvey-Martin, and W. Thompson, “A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay,” Molecular Human Reproduction, vol. 2, no. 8, pp. 613–619, 1996. View at Scopus
  49. E. T. Donnelly, E. Kristine Steele, N. McClure, and S. E. M. Lewis, “Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation,” Human Reproduction, vol. 16, no. 6, pp. 1191–1199, 2001. View at Scopus
  50. A. Thurin, J. Hausken, T. Hillensjö et al., “Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization,” The New England Journal of Medicine, vol. 351, no. 23, pp. 2392–2402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. J. J. Kurinczuk and C. Bower, “Birth defects in infants conceived by intracytoplasmic sperm injection: an alternative interpretation,” British Medical Journal, vol. 315, no. 7118, pp. 1260–1266, 1997. View at Scopus
  52. B. Källén, O. Finnström, A. Lindam, E. Nilsson, K. G. Nygren, and P. O. Otterblad, “Congenital malformations in infants born after in vitro fertilization in Sweden,” Birth Defects Research Part A, vol. 88, no. 3, pp. 137–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Wen, J. Jiang, C. Ding et al., “Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis,” Fertility and Sterility, vol. 97, no. 6, pp. 1331–1337, 2012. View at Publisher · View at Google Scholar
  54. J. Cummins, “Potential pitfalls in male reproductive technology,” in The Male Gamete: From Basic Science to Clinical Applications, C. Gagnon, Ed., pp. 417–427, Cache River Press, Vienna, Ill, USA, 1999.
  55. A. M. Jequier and J. M. Cummins, “Attitudes to clinical andrology: a time for change,” Human Reproduction, vol. 12, no. 5, pp. 875–876, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. A. T. Kjellberg, P. Carlsson, and C. Bergh, “Randomized single versus double embryo transfer: obstetric and paediatric outcome and a cost-effectiveness analysis,” Human Reproduction, vol. 21, no. 1, pp. 210–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Silverberg, S. Daya, J. P. Auray et al., “Analysis of the cost effectiveness of recombinant versus urinary follicle-stimulating hormone in in vitro fertilization/intracytoplasmic sperm injection programs in the United States,” Fertility and Sterility, vol. 77, no. 1, pp. 107–113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Strandell, A. Lindhard, and I. Eckerlund, “Cost-effectiveness analysis of salpingectomy prior to IVF, based on a randomized controlled trial,” Human Reproduction, vol. 20, no. 12, pp. 3284–3292, 2005. View at Publisher · View at Google Scholar · View at Scopus