Abstract

Selective loss of neurons, abnormal protein deposition and neuroinflammation are the common pathological features of neurodegenerative diseases, and these features are closely related to one another. In Parkinson's disease, abnormal aggregation and deposition of α-synuclein is known as a critical event in pathogenesis of the disease, as well as in other related neurodegenerative disorders, such as dementia with Lewy bodies and multiple system atrophy. Increasing evidence suggests that α-synuclein aggregates can activate glial cells to induce neuroinflammation. However, how an inflammatory microenvironment is established and maintained by this protein remains unknown. Findings from our recent study suggest that neuronal α-synuclein can be directly transferred to astrocytes through sequential exocytosis and endocytosis and induce inflammatory responses from astrocytes. Here we discuss potential roles of astrocytes in a cascade of events leading to α-synuclein-induced neuroinflammation.