About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 134723, 8 pages
http://dx.doi.org/10.1155/2012/134723
Research Article

Effect of Antioxidant Mineral Elements Supplementation in the Treatment of Hypertension in Albino Rats

1Biochemistry Department, Usmanu Danfodiyo University, PMB, Sokoto 2346, Nigeria
2Faculty of Veterinary Medicine, Usmanu Danfodiyo University, PMB , Sokoto 2346, Nigeria

Received 15 April 2012; Accepted 21 May 2012

Academic Editor: Adrian Manea

Copyright © 2012 S. A. Muhammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. L. Murray and A. D. Lopez, “Mortality by cause for eight regions of the world: global burden of disease study,” Lancet, vol. 349, no. 9061, pp. 1269–1276, 1997. View at Scopus
  2. R. Rodrigo, W. Passalacqua, J. Araya, M. Orellana, and G. Rivera, “Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension,” Journal of Cardiovascular Pharmacology, vol. 42, no. 4, pp. 453–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Miyajima, S. Minatoguchi, Y. Ito et al., “Reduction of QTc dispersion by the angiotensin II receptor blocker valsartan may be related to its anti-oxidative stress effect in patients with essential hypertension,” Hypertension Research, vol. 30, no. 4, pp. 307–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. R. Winkelmann, J. Hager, W. E. Kraus et al., “Genetics of coronary heart disease: current knowledge and research principles,” American Heart Journal, vol. 140, no. 4, pp. S11–S26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Rassler, “The renin-angiotensin system in the development of salt-sensitive hypertension in animal models and humans,” Pharmaceuticals, vol. 3, no. 4, pp. 940–960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Oparil, M. A. Zaman, and D. A. Calhoun, “Pathogenesis of hypertension,” Annals of Internal Medicine, vol. 139, no. 9, pp. 761–776, 2003. View at Scopus
  7. E. Grossman, “Does increased oxidative stress cause hypertension?” Diabetes care, vol. 31, pp. S185–S189, 2008. View at Scopus
  8. K. Yasunari, K. Maeda, M. Nakamura, and J. Yoshikawa, “Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose, and C-reacting protein,” Hypertension, vol. 39, no. 3, pp. 777–780, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Lacy, D. T. O'Connor, and G. W. Schmid-Schönbein, “Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension,” Journal of Hypertension, vol. 16, no. 3, pp. 291–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Berry, C. A. Hamilton, M. J. Brosnan et al., “Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries,” Circulation, vol. 101, no. 18, pp. 2206–2212, 2000. View at Scopus
  11. R. M. Touyz and E. L. Schiffrin, “Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways,” Journal of Hypertension, vol. 19, no. 7, pp. 1245–1254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Taniyama and K. K. Griendling, “Reactive oxygen species in the vasculature: molecular and cellular mechanisms,” Hypertension, vol. 42, no. 6, pp. 1075–1081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Versari, E. Daghini, A. Virdis, L. Ghiadoni, and S. Taddei, “Endothelium-dependent contractions and endothelial dysfunction in human hypertension,” British Journal of Pharmacology, vol. 157, no. 4, pp. 527–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Félétou, R. Köhler, and P. M. Vanhoutte, “Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets,” Current Hypertension Reports, vol. 12, no. 4, pp. 267–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Hiroyuki, S. Masamichi, and W. Osamu, “Zinc deficiency and hypertension,” in Proceedings of the 18th Symposium on Trace Nutrients Research, pp. 67–71, 2001.
  16. J. Zicha, Z. Dobešová, and J. Kuneš, “Relative deficiency of nitric oxide-dependent vasodilation in salt-hypertensive Dahl rats: the possible role of superoxide anions,” Journal of Hypertension, vol. 19, no. 2, pp. 247–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Chen, R. M. Touyz, J. B. Park, and E. L. Schiffrin, “Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR,” Hypertension, vol. 38, no. 3, pp. 606–611, 2001. View at Scopus
  18. S. J. Duffy, N. Gokce, M. Holbrook et al., “Effect of ascorbic acid treatment on conduit vessel endothelial dysfunction in patients with hypertension,” American Journal of Physiology, vol. 280, no. 2, pp. H528–H534, 2001. View at Scopus
  19. M. Boshtam, M. Rafiei, K. Sadeghi, and N. Sarraf-Zadegan, “Vitamin E can reduce blood pressure in mild hypertensives,” International Journal for Vitamin and Nutrition Research, vol. 72, no. 5, pp. 309–314, 2002. View at Scopus
  20. N. Tian, K. D. Thrasher, P. D. Gundy, M. D. Hughson, and R. D. Jr Manning, “Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitivity hypertension,” Hypertension, vol. 45, no. 5, pp. 934–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Trinder, “Determination of blood glucose in blood using glucose oxidase with an alternative oxygen acceptor,” Annals of Clinical Biochemistry, vol. 6, pp. 24–25, 1969.
  22. C. C. Allain, L. S. Poon, and C. S. G. Chan, “Enzymatic determination of total serum cholesterol,” Clinical Chemistry, vol. 20, no. 4, pp. 470–475, 1974. View at Scopus
  23. N. W. Tietz, “Serum triglyceride determination,” in Clinical Guide to Laboratory Tests, pp. 554–556, W.B. Saunders, Philadelphia, Pa, USA, 2nd edition, 1990.
  24. M. Burstein, H. R. Scholnick, and R. Morfin, “Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions,” Journal of Lipid Research, vol. 11, no. 6, pp. 583–595, 1970. View at Scopus
  25. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Scopus
  26. R. D. Abbott, P. W. F. Wilson, W. B. Kannel, and W. P. Castelli, “High density lipoprotein cholesterol, total cholesterol screening, and myocardial infarction. The Framingham Study,” Arteriosclerosis, vol. 8, no. 3, pp. 207–211, 1988. View at Scopus
  27. D. Koracevic, G. Koracevic, V. Djordjevic, S. Andrejevic, and V. Cosic, “Method for the measurement of antioxidant activity in human fluids,” Journal of Clinical Pathology, vol. 54, no. 5, pp. 356–361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. W. G. Niehaus and B. Samuelsson, “Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation,” European Journal of Biochemistry, vol. 6, no. 1, pp. 126–130, 1968. View at Scopus
  29. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Scopus
  30. S. Kadiri, “Tackling cardiovascular disease in Africa,” British Medical Journal, vol. 331, no. 7519, pp. 711–712, 2005. View at Scopus
  31. T. Ogihara, T. Asano, K. Ando et al., “High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats,” Hypertension, vol. 40, no. 1, pp. 83–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. B. M. S. Matthew, “Phenotypic expression of hypertension in rodent models through dietary manipulation,” Research diets, pp. 1–3, 2008.
  33. P. Meneton, X. Jeunemaitre, H. E. De Wardener, and G. A. Macgregor, “Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases,” Physiological Reviews, vol. 85, no. 2, pp. 679–715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Kobori, A. Nishiyama, Y. Abe, and L. G. Navar, “Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet,” Hypertension, vol. 41, no. 3 I, pp. 592–597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kagota, A. Tamashiro, Y. Yamaguchi et al., “Downregulation of vascular soluble guanylate cyclase induced by high salt intake in spontaneously hypertensive rats,” British Journal of Pharmacology, vol. 134, no. 4, pp. 737–744, 2001. View at Scopus
  36. O. S. Adeniyi and A. A. Fasanmade, “Effect of dietary zinc supplementation on salt induced hypertension in rats,” International Journal of Pharmacology, vol. 2, no. 5, pp. 485–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. N. K. Lakshmana, J. Deepthi, Y. N. Rao, and K. M. Deedi, “Study of lipid profile, serum magnesium and blood glucose in hypertension,” Biology and Medicine, vol. 2, no. 1, pp. 6–16, 2010.
  38. U. K. Biswas and A. Kumar, “A study on lipid profile, oxidation stress and carbonic anhydrase activity in patients with essential hypertension,” Journal of Clinical and Diagnostic Research, vol. 4, no. 6, pp. 3414–3420, 2010. View at Scopus