About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 349710, 13 pages
http://dx.doi.org/10.1155/2012/349710
Review Article

Exercise in the Metabolic Syndrome

1Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
2Physiology Research Center, Kashan University of Medical Sciences and Health Services, Kashan 87155/111, Iran

Received 27 March 2012; Accepted 13 May 2012

Academic Editor: Steve R. McAnulty

Copyright © 2012 Saeid Golbidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Fujita, “Insulin resistance and salt-sensitive hypertension in metabolic syndrome,” Nephrology Dialysis Transplantation, vol. 22, no. 11, pp. 3102–3107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Fujita, “Aldosterone in salt-sensitive hypertension and metabolic syndrome,” Journal of Molecular Medicine, vol. 86, no. 6, pp. 729–734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. W. Park, S. Zhu, L. Palaniappan, S. Heshka, M. R. Carnethon, and S. B. Heymsfield, “The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994,” Archives of Internal Medicine, vol. 163, no. 4, pp. 427–436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. I. D. Caterson, V. Hubbard, G. A. Bray et al., “Prevention conference VII: obesity, a worldwide epidemic related to heart disease and stroke: group III: worldwide comorbidities of obesity,” Circulation, vol. 110, no. 18, pp. e476–e483, 2004. View at Scopus
  6. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Galassi, K. Reynolds, and J. He, “Metabolic syndrome and risk of cardiovascular disease: a meta-analysis,” American Journal of Medicine, vol. 119, no. 10, pp. 812–819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Scopus
  9. G. M. Reaven, “Insulin resistance: the link between obesity and cardiovascular disease,” Medical Clinics of North America, vol. 95, pp. 875–892, 2011.
  10. S. Uretsky, F. H. Messerli, S. Bangalore et al., “Obesity paradox in patients with hpertension and coronary artery disease,” American Journal of Medicine, vol. 120, no. 10, pp. 863–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Aguilar-Salinas, E. García, L. Robles et al., “High adiponectin concentrations are associated with the metabolically healthy obese phenotype,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 10, pp. 4075–4079, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. P. Wildman, P. Muntner, K. Reynolds et al., “The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004),” Archives of Internal Medicine, vol. 168, no. 15, pp. 1617–1624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Stefan, K. Kantartzis, J. Machann et al., “Identification and characterization of metabolically benign obesity in humans,” Archives of Internal Medicine, vol. 168, no. 15, pp. 1609–1616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. P. Wildman, “Healthy obesity,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 12, pp. 438–443, 2009.
  15. L. F. Van Gaal, I. L. Mertens, and C. E. De Block, “Mechanisms linking obesity with cardiovascular disease,” Nature, vol. 444, no. 7121, pp. 875–880, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Després and I. Lemieux, “Abdominal obesity and metabolic syndrome,” Nature, vol. 444, no. 7121, pp. 881–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Abate, A. Garg, R. M. Peshock, J. Stray-Gundersen, and S. M. Grundy, “Relationships of generalized and regional adiposity to insulin sensitivity in men,” Journal of Clinical Investigation, vol. 96, no. 1, pp. 88–98, 1995. View at Scopus
  18. J. M. Fernández-Real and W. Ricart, “Insulin resistance and chronic cardiovascular inflammatory syndrome,” Endocrine Reviews, vol. 24, no. 3, pp. 278–301, 2003. View at Scopus
  19. P. Welsh, E. Polisecki, M. Robertson et al., “Unraveling the directional link between adiposity and inflammation: a bidirectional mendelian randomization approach,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Stocker and J. F. Keaney, “Role of oxidative modifications in atherosclerosis,” Physiological Reviews, vol. 84, no. 4, pp. 1381–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. F. Keaney Jr., M. G. Larson, R. S. Vasan et al., “Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 434–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Pinzani, F. Marra, and V. Carloni, “Signal transduction in hepatic stellate cells,” Liver, vol. 18, no. 1, pp. 2–13, 1998. View at Scopus
  25. A. Gastaldelli and G. Basta, “Ectopic fat and cardiovascular disease: what is the link?” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 7, pp. 481–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Sironi, A. Gastaldelli, A. Mari et al., “Visceral fat in hypertension: influence on insulin resistance and β-cell function,” Hypertension, vol. 44, no. 2, pp. 127–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Iacobellis, M. C. Ribaudo, F. Assael et al., “Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5163–5168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Mazurek, L. Zhang, A. Zalewski et al., “Human epicardial adipose tissue is a source of inflammatory mediators,” Circulation, vol. 108, no. 20, pp. 2460–2466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Scopus
  30. P. A. Kern, M. Saghizadeh, J. M. Ong, R. J. Bosch, R. Deem, and R. B. Simsolo, “The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2111–2119, 1995. View at Scopus
  31. A. M. Diehl, “Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease,” Clinics in Liver Disease, vol. 8, no. 3, pp. 619–638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G. S. Hotamisligil, “Protection from obesity-induced insulin resistance in mice lacking TNF- α function,” Nature, vol. 389, no. 6651, pp. 610–614, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. K. T. Uysal, S. M. Wiesbrock, and G. S. Hotamisligil, “Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α- mediated insulin resistance in genetic obesity,” Endocrinology, vol. 139, no. 12, pp. 4832–4838, 1998. View at Scopus
  34. A. Katsuki, Y. Sumida, H. Urakawa et al., “Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance,” Diabetes Care, vol. 26, no. 8, pp. 2341–2344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Gabriely and N. Barzilai, “Surgical removal of visceral adipose tissue: effects on insulin action,” Current Diabetes Reports, vol. 3, no. 3, pp. 201–206, 2003. View at Scopus
  36. G. N. Chaldakov, I. S. Stankulov, M. Hristova, and P. I. Ghenev, “Adipobiology of disease: adipokines and adipokine-targeted pharmacology,” Current Pharmaceutical Design, vol. 9, no. 12, pp. 1023–1031, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. P. D. Berk, S. L. Zhou, M. Bradbury, D. Stump, C. L. Kiang, and L. M. Isola, “Regulated membrane transport of free fatty acids in adipocytes: role in obesity and non-insulin dependent diabetes mellitus,” Transactions of the American Clinical and Climatological Association, vol. 108, pp. 26–43, 1996. View at Scopus
  38. G. Robertson, I. Leclercq, and G. C. Farrell, “Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress,” American Journal of Physiology, vol. 281, no. 5, pp. G1135–G1139, 2001. View at Scopus
  39. T. Hashimoto, T. Fujita, N. Usuda et al., “Peroxisomal and mitochondrial fatty acid β-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor and peroxisomal fatty acyl-CoA oxidase: genotype correlation with fatty liver phenotype,” Journal of Biological Chemistry, vol. 274, no. 27, pp. 19228–19236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Schulze-Osthoff, A. C. Bakker, B. Vanhaesebroeck, R. Beyaert, W. A. Jacob, and W. Fiers, “Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation,” Journal of Biological Chemistry, vol. 267, no. 8, pp. 5317–5323, 1992. View at Scopus
  41. J. C. Bournat and C. W. Brown, “Mitochondrial dysfunction in obesity,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 446–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. J. Lemasters, T. Qian, C. A. Bradham et al., “Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death,” Journal of Bioenergetics and Biomembranes, vol. 31, no. 4, pp. 305–319, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Joshi-Barve, S. S. Barve, W. Butt, J. Klein, and C. J. McClain, “Inhibition of proteasome function leads to NF-κB-independent IL-8 expression in human hepatocytes,” Hepatology, vol. 38, no. 5, pp. 1178–1187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Monteiro and I. Azevedo, “Chronic inflammation in obesity and the metabolic syndrome,” Mediators of Inflammation, vol. 2010, Article ID 289645, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Ruan and H. F. Lodish, “Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α,” Cytokine and Growth Factor Reviews, vol. 14, no. 5, pp. 447–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. K. N. Frayn, F. Karpe, B. A. Fielding, I. A. Macdonald, and S. W. Coppack, “Integrative physiology of human adipose tissue,” International Journal of Obesity, vol. 27, no. 8, pp. 875–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Ronti, G. Lupattelli, and E. Mannarino, “The endocrine function of adipose tissue: an update,” Clinical Endocrinology, vol. 64, no. 4, pp. 355–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Yamauchi, J. Kamon, Y. Ito et al., “Cloning of adiponectin receptors that mediate antidiabetic metabolic effects,” Nature, vol. 423, no. 6941, pp. 762–769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Grattagliano, V. O. Palmieri, P. Portincasa, A. Moschetta, and G. Palasciano, “Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis,” Journal of Nutritional Biochemistry, vol. 19, no. 8, pp. 491–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. C. K. Roberts, R. J. Barnard, R. K. Sindhu, M. Jurczak, A. Ehdaie, and N. D. Vaziri, “A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression,” Journal of Applied Physiology, vol. 98, no. 1, pp. 203–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. H. C. Kim, S. H. Choi, H. W. Shin et al., “Severity of ultrasonographic liver steatosis and metabolic syndrome in Korean men and women,” World Journal of Gastroenterology, vol. 11, no. 34, pp. 5314–5321, 2005. View at Scopus
  54. A. M. Diehl, “Fatty liver, hypertension, and the metabolic syndrome,” Gut, vol. 53, no. 7, pp. 923–924, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Vega-López, S. Devaraj, and I. Jialal, “Oxidative stress and antioxidant-supplementation in the management of diabetic cardiovascular disease,” Journal of Investigative Medicine, vol. 52, no. 1, pp. 24–32, 2004. View at Scopus
  56. A. Ceriello, F. Mercuri, L. Quagliaro et al., “Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress,” Diabetologia, vol. 44, no. 7, pp. 834–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. I. V. Turko, S. Marcondes, and F. Murad, “Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase,” American Journal of Physiology, vol. 281, no. 6, pp. H2289–H2294, 2001. View at Scopus
  58. T. J. Guzik, N. E. West, E. Black et al., “Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors,” Circulation Research, vol. 86, no. 9, pp. E85–E90, 2000. View at Scopus
  59. T. J. Guzik, S. Mussa, D. Gastaldi et al., “Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase,” Circulation, vol. 105, no. 14, pp. 1656–1662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Aliciguzel, I. Ozen, M. Aslan, and U. Karayalcin, “Activities of xanthine oxidoreductose and antioxidant enzymes in different tissues of diabetic rats,” Journal of Laboratory and Clinical Medicine, vol. 142, no. 3, pp. 172–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. A. C. Maritim, R. A. Sanders, and J. B. Watkins, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kitada, D. Koya, T. Sugimoto et al., “Translocation of glomerular p47phox and p67phox by protein kinase C-β activation is required for oxidative stress in diabetic nephropathy,” Diabetes, vol. 52, no. 10, pp. 2603–2614, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Etoh, T. Inoguchi, M. Kakimoto et al., “Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment,” Diabetologia, vol. 46, no. 10, pp. 1428–1437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Green, M. D. Brand, and M. P. Murphy, “Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes,” Diabetes, vol. 53, supplement 1, pp. S110–S118, 2004. View at Scopus
  65. T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Taniyama and K. K. Griendling, “Reactive oxygen species in the vasculature: molecular and cellular mechanisms,” Hypertension, vol. 42, no. 6, pp. 1075–1081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Liu and D. D. Gutterman, “The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation,” Vascular Pharmacology, vol. 38, no. 1, pp. 43–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Liu, K. Terata, Q. Chai, H. Li, L. H. Kleinman, and D. D. Gutterman, “Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles,” Circulation Research, vol. 91, no. 11, pp. 1070–1076, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. F. G. Soriano, L. Virág, and C. Szabó, “Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation,” Journal of Molecular Medicine, vol. 79, no. 8, pp. 437–448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. K. Griendling and G. A. FitzGerald, “Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS,” Circulation, vol. 108, no. 16, pp. 1912–1916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Lastra, A. Whaley-Connell, C. Manrique et al., “Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat,” American Journal of Physiology, vol. 295, no. 1, pp. E110–E116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. R. Hayden, A. Whaley-Connell, and J. R. Sowers, “Renal redox stress and remodeling in metabolic syndrome, type 2 diabetes mellitus, and diabetic nephropathy: paying homage to the podocyte,” American Journal of Nephrology, vol. 25, no. 6, pp. 553–569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. J. R. Sowers, A. Whaley-Connell, and M. Epstein, “The emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension,” Annals of Internal Medicine, vol. 150, no. 11, pp. 776–783, 2009. View at Scopus
  75. M. Caprio, B. Fève, A. Claës, S. Viengchareun, M. Lombès, and M. C. Zennaro, “Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis,” The FASEB Journal, vol. 21, no. 9, pp. 2185–2194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. C. M. Rondinone, D. Rodbard, and M. E. Baker, “Aldosterone stimulates differentiation of mouse 3T3-L1 cells into adipocytes,” Endocrinology, vol. 132, no. 6, pp. 2421–2426, 1993. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Catena, R. Lapenna, S. Baroselli et al., “Insulin sensitivity in patients with primary aldosteronism: a follow-up study,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3457–3463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Ehrhart-Bornstein, K. Arakelyan, A. W. Krug, W. A. Scherbaum, and S. R. Bornstein, “Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells,” Endocrine Research, vol. 30, no. 4, pp. 865–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Guo, V. Ricchiuti, B. Q. Lian et al., “Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory adipokines,” Circulation, vol. 117, no. 17, pp. 2253–2261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. T. L. Goodfriend, D. L. Ball, B. M. Egan, W. B. Campbell, and K. Nithipatikom, “Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion,” Hypertension, vol. 43, no. 2, pp. 358–363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. L. Tuck, J. Sowers, and L. Dornfeld, “The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients,” The New England Journal of Medicine, vol. 304, no. 16, pp. 930–933, 1981. View at Scopus
  82. C. Dall'Asta, P. Vedani, P. Manunta et al., “Effect of weight loss through laparoscopic gastric banding on blood pressure, plasma renin activity and aldosterone levels in morbid obesity,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 19, no. 2, pp. 110–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. K. C. Gilbert and N. J. Brown, “Aldosterone and inflammation,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 17, pp. 199–204, 2010.
  84. A. Virdis, M. F. Neves, F. Amiri, E. Viel, R. M. Touyz, and E. L. Schiffrin, “Spironolactone improves angiotensin-induced vascular changes and oxidative stress,” Hypertension, vol. 40, no. 4, pp. 504–510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Johar, A. C. Cave, A. Narayanapanicker, D. J. Grieve, and A. M. Shah, “Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase,” The FASEB Journal, vol. 20, no. 9, pp. 1546–1548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Stas, A. Whaley-Connell, J. Habibi et al., “Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling,” Endocrinology, vol. 148, no. 8, pp. 3773–3780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. S. A. Cooper, A. Whaley-Connell, J. Habibi et al., “Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance,” American Journal of Physiology, vol. 293, no. 4, pp. H2009–H2023, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. G. E. Callera, R. M. Touyz, R. C. Tostes et al., “Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src,” Hypertension, vol. 45, no. 4, pp. 773–779, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. E. R. Blasi, R. Rocha, A. E. Rudolph, E. A. G. Blomme, M. L. Polly, and E. G. McMahon, “Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats,” Kidney International, vol. 63, no. 5, pp. 1791–1800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Benetos, P. Lacolley, and M. E. Safar, “Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 6, pp. 1152–1156, 1997. View at Scopus
  91. P. Lacolley, C. Labat, A. Pujol, C. Delcayre, A. Benetos, and M. Safar, “Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone,” Circulation, vol. 106, no. 22, pp. 2848–2853, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. M. F. Neves, F. Amiri, A. Virdis, Q. N. Diep, and E. L. Schiffrin, “Role of aldosterone in angiotensin II-induced cardiac and aortic inflammation, fibrosis, and hypertrophy,” Canadian Journal of Physiology and Pharmacology, vol. 83, no. 11, pp. 999–1006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Suzuki, M. Iwai, M. Mogi et al., “Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 4, pp. 917–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. L. M. Mosso, C. A. Carvajal, A. Maiz et al., “A possible association between primary aldosteronism and a lower β-cell function,” Journal of Hypertension, vol. 25, no. 10, pp. 2125–2130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. M. R. Hayden and J. R. Sowers, “Pancreatic renin-angiotensin-aldosterone system in the cardiometabolic syndrome and type 2 diabetes mellitus,” Journal of the Cardiometabolic Syndrome, vol. 3, no. 3, pp. 129–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. R. H. Olsen, R. Krogh-Madsen, C. Thomsen, F. W. Booth, and B. K. Pedersen, “Metabolic responses to reduced daily steps in healthy nonexercising men,” Journal of the American Medical Association, vol. 299, no. 11, pp. 1261–1263, 2008. View at Scopus
  97. R. Burstein, C. Polychronakos, and C. J. Toews, “Acute reversal of the enhanced insulin action in trained athletes. Association with insulin receptor changes,” Diabetes, vol. 34, no. 8, pp. 756–760, 1985. View at Scopus
  98. A. V. Nunn, G. W. Guy, J. S. Brodie, and J. D. Bell, “Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle,” Nutrition and Metabolism, vol. 7, article 87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Dantzer, J. C. O'Connor, G. G. Freund, R. W. Johnson, and K. W. Kelley, “From inflammation to sickness and depression: when the immune system subjugates the brain,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 46–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. A. H. Miller, V. Maletic, and C. L. Raison, “Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression,” Biological Psychiatry, vol. 65, no. 9, pp. 732–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. E. J. Calabrese and L. A. Baldwin, “Hormesis: a generalizable and unifying hypothesis,” Critical Reviews in Toxicology, vol. 31, no. 4-5, pp. 353–424, 2001. View at Scopus
  102. J. Gustat, S. R. Srinivasan, A. Elkasabany, and G. S. Berenson, “Relation of self-rated measures of physical activity to multiple risk factors of insulin resistance syndrome in young adults: the Bogalusa Heart Study,” Journal of Clinical Epidemiology, vol. 55, no. 10, pp. 997–1006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. T. A. Lakka, D. E. Laaksonen, H. M. Lakka et al., “Sedentary lifestyle, poor cardiorespiratory fitness, and the metabolic syndrome,” Medicine and Science in Sports and Exercise, vol. 35, no. 8, pp. 1279–1286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. K. L. Rennie, N. McCarthy, S. Yazdgerdi, M. Marmot, and E. Brunner, “Association of the metabolic syndrome with both vigorous and moderate physical activity,” International Journal of Epidemiology, vol. 32, no. 4, pp. 600–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. B. L. Marks, A. Ward, D. H. Morris, J. Castellani, and J. M. Rippe, “Fat-free mass is maintained in women following a moderate diet and exercise program,” Medicine and Science in Sports and Exercise, vol. 27, no. 9, pp. 1243–1251, 1995. View at Scopus
  106. R. G. McMurray and L. B. Andersen, “The influence of exercise on metabolic syndrome in youth: a review,” American Journal of Lifestyle Medicine, vol. 4, no. 2, pp. 176–186, 2010. View at Publisher · View at Google Scholar
  107. N. Erdei, Z. Bagi, I. Édes, G. Kaley, and A. Koller, “H2O2 increases production of constrictor prostaglandins in smooth muscle leading to enhanced arteriolar tone in Type 2 diabetic mice,” American Journal of Physiology, vol. 292, no. 1, pp. H649–H656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. D. C. Nieman, J. M. Davis, D. A. Henson et al., “Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run,” Journal of Applied Physiology, vol. 94, no. 5, pp. 1917–1925, 2003. View at Scopus
  109. C. Keller, A. Steensberg, H. Pilegaard et al., “Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content,” The FASEB Journal, vol. 15, no. 14, pp. 2748–2750, 2001. View at Scopus
  110. M. A. Febbraio and B. K. Pedersen, “Contraction-induced myokine production and release: is skeletal muscle an endocrine organ?” Exercise and Sport Sciences Reviews, vol. 33, no. 3, pp. 114–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. B. K. Pedersen, M. A. Febbraio, and R. A. Mooney, “Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis,” Journal of Applied Physiology, vol. 102, no. 2, pp. 814–819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Festa, R. D'Agostino, G. Howard, L. Mykkänen, R. P. Tracy, and S. M. Haffner, “Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS),” Circulation, vol. 102, no. 1, pp. 42–47, 2000. View at Scopus
  113. R. Starkie, S. R. Ostrowski, S. Jauffred, M. Febbraio, and B. K. Pedersen, “Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans,” The FASEB Journal, vol. 17, no. 8, pp. 884–886, 2003. View at Scopus
  114. C. Keller, P. Keller, M. Giralt, J. Hidalgo, and B. K. Pedersen, “Exercise normalises overexpression of TNF-α in knockout mice,” Biochemical and Biophysical Research Communications, vol. 321, no. 1, pp. 179–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. T. van der Poll, S. M. Coyle, K. Barbosa, C. C. Braxton, and S. F. Lowry, “Epinephrine inhibits tumor necrosis factor-α and potentiates interleukin 10 production during human endotoxemia,” Journal of Clinical Investigation, vol. 97, no. 3, pp. 713–719, 1996. View at Scopus
  116. E. W. Petersen, A. L. Carey, M. Sacchetti et al., “Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro,” American Journal of Physiology, vol. 288, no. 1, pp. E155–E162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. V. Wallenius, K. Wallenius, B. Ahrén et al., “Interleukin-6-deficient mice develop mature-onset obesity,” Nature Medicine, vol. 8, no. 1, pp. 75–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. G. van Hall, A. Steensberg, M. Sacchetti et al., “Interleukin-6 stimulates lipolysis and fat oxidation in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3005–3010, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Brandt and B. K. Pedersen, “The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 520258, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. E. Hopps, B. Canino, and G. Caimi, “Effects of exercise on inflammation markers in type 2 diabetic subjects,” Acta Diabetologica, vol. 48, no. 3, pp. 183–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. T. Hayashi, J. F. P. Wojtaszewski, and L. J. Goodyear, “Exercise regulation of glucose transport in skeletal muscle,” American Journal of Physiology, vol. 273, no. 6, pp. E1039–E1051, 1997. View at Scopus
  122. S. Lund, G. D. Holman, O. Schmitz, and O. Pedersen, “Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 5817–5821, 1995. View at Publisher · View at Google Scholar · View at Scopus
  123. J. R. Zierath, T. S. Tsao, A. E. Stenbit, J. W. Ryder, D. Galuska, and M. J. Charron, “Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficient muscles by muscle-specific GLUT4 transgenic complementation,” Journal of Biological Chemistry, vol. 273, no. 33, pp. 20910–20915, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. B. Cheatham, C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn, “Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation,” Molecular and Cellular Biology, vol. 14, no. 7, pp. 4902–4911, 1994. View at Scopus
  125. L. J. Goodyear, “AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport?” Exercise and Sport Sciences Reviews, vol. 28, no. 3, pp. 113–116, 2000. View at Scopus
  126. A. Krook, M. Björnholm, D. Galuska et al., “Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients,” Diabetes, vol. 49, no. 2, pp. 284–292, 2000. View at Scopus
  127. J. A. Houmard, C. D. Shaw, M. S. Hickey, and C. J. Tanner, “Effect of short-term exercise training on insulin-stimulated PI 3-kinase activity in human skeletal muscle,” American Journal of Physiology, vol. 277, no. 6, pp. E1055–E1060, 1999. View at Scopus
  128. D. S. King, G. P. Dalsky, M. A. Staten, W. E. Clutter, D. R. Van Houten, and J. O. Holloszy, “Insulin action and secretion in endurance-trained and untrained humans,” Journal of Applied Physiology, vol. 63, no. 6, pp. 2247–2252, 1987. View at Scopus
  129. B. H. Goodpaster, A. Katsiaras, and D. E. Kelley, “Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity,” Diabetes, vol. 52, no. 9, pp. 2191–2197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. V. A. Hughes, M. A. Fiatarone, R. A. Fielding et al., “Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance,” American Journal of Physiology, vol. 264, no. 6, pp. E855–E862, 1993. View at Scopus
  131. C. R. Bruce, A. D. Kriketos, G. J. Cooney, and J. A. Hawley, “Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with Type 2 diabetes,” Diabetologia, vol. 47, no. 1, pp. 23–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Poirier, A. Tremblay, T. Broderick, C. Catellier, G. Tancrède, and A. Nadeau, “Impact of moderate aerobic exercise training on insulin sensitivity in type 2 diabetic men treated with oral hypoglycemic agents: is insulin sensitivity enhanced only in nonobese subjects?” Medical Science Monitor, vol. 8, no. 2, pp. CR59–CR65, 2002. View at Scopus
  133. G. L. Dohm, “Invited review: regulation of skeletal muscle GLUT-4 expression by exercise,” Journal of Applied Physiology, vol. 93, no. 2, pp. 782–787, 2002. View at Scopus
  134. J. R. Zierath, “Invited review: exercise training-induced changes in insulin signaling in skeletal muscle,” Journal of Applied Physiology, vol. 93, no. 2, pp. 773–781, 2002. View at Scopus
  135. P. S. MacLean, D. Zheng, and G. L. Dohm, “Muscle glucose transporter (GLUT 4) gene expression during exercise,” Exercise and Sport Sciences Reviews, vol. 28, no. 4, pp. 148–152, 2000. View at Scopus
  136. I. Irrcher, P. J. Adhihetty, A. M. Joseph, V. Ljubicic, and D. A. Hood, “Regulation of mitochondrial biogenesis in muscle by endurance exercise,” Sports Medicine, vol. 33, no. 11, pp. 783–793, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. J. J. Lehman, P. M. Barger, A. Kovacs, J. E. Saffitz, D. M. Medeiros, and D. P. Kelly, “Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis,” Journal of Clinical Investigation, vol. 106, no. 7, pp. 847–856, 2000. View at Scopus
  138. H. Liang and W. F. Ward, “PGC-1α: a key regulator of energy metabolism,” American Journal of Physiology, vol. 30, no. 4, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. K. Baar, A. R. Wende, T. E. Jones et al., “Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1,” The FASEB Journal, vol. 16, no. 14, pp. 1879–1886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. W. T. Garvey, L. Maianu, J. A. Hancock, A. M. Golichowski, and A. Baron, “Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM,” Diabetes, vol. 41, no. 4, pp. 465–475, 1992. View at Scopus
  141. O. Pedersen, J. F. Bak, P. H. Andersen et al., “Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity for NIDDM,” Diabetes, vol. 39, no. 7, pp. 865–870, 1990. View at Scopus
  142. F. Dela, T. Ploug, A. Handberg et al., “Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM,” Diabetes, vol. 43, no. 7, pp. 862–865, 1994. View at Scopus
  143. J. R. Zierath and H. Wallberg-Henriksson, “From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients,” Annals of the New York Academy of Sciences, vol. 967, pp. 120–134, 2002. View at Scopus
  144. J. P. Kirwan and M. Jing, “Modulation of insulin signaling in human skeletal muscle in response to exercise,” Exercise and Sport Sciences Reviews, vol. 30, no. 2, pp. 85–90, 2002. View at Scopus
  145. M. Ishiki and A. Klip, “Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners,” Endocrinology, vol. 146, no. 12, pp. 5071–5078, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. R. V. Farese, M. P. Sajan, and M. L. Standaert, “Atypical protein kinase C in insulin action and insulin resistance,” Biochemical Society Transactions, vol. 33, no. 2, pp. 350–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. C. Frøsig and E. A. Richter, “Improved insulin sensitivity after exercise: focus on insulin signaling,” Obesity, vol. 17, no. 3, pp. S15–S20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. C. B. Dugani and A. Klip, “Glucose transporter 4: cycling, compartments and controversies,” EMBO Reports, vol. 6, no. 12, pp. 1137–1142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Le Roith and Y. Zick, “Recent advances in our understanding of insulin action and insulin resistance,” Diabetes Care, vol. 24, no. 3, pp. 588–597, 2001. View at Scopus
  150. L. P. Turcotte, E. A. Richter, and B. Kiens, “Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans,” American Journal of Physiology, vol. 262, no. 6, pp. E791–E799, 1992. View at Scopus
  151. R. J. Tunstall, K. A. Mehan, G. D. Wadley et al., “Exercise training increases lipid metabolism gene expression in human skeletal muscle,” American Journal of Physiology, vol. 283, no. 1, pp. E66–E72, 2002. View at Scopus
  152. H. A. Keizer, G. Schaart, N. N. Tandon, J. F. C. Glatz, and J. J. F. P. Luiken, “Subcellular immunolocalisation of fatty acid translocase (FAT)/CD36 in human type-1 and type-2 skeletal muscle fibres,” Histochemistry and Cell Biology, vol. 121, no. 2, pp. 101–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. B. Kiens, C. Roepstorff, J. F. C. Glatz et al., “Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender,” Journal of Applied Physiology, vol. 97, no. 4, pp. 1209–1218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. B. Kiens, S. Kristiansen, P. Jensen, E. A. Richter, and L. P. Turcotte, “Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training,” Biochemical and Biophysical Research Communications, vol. 231, no. 2, pp. 463–465, 1997. View at Publisher · View at Google Scholar · View at Scopus
  155. B. Kola, M. Boscaro, G. A. Rutter, A. B. Grossman, and M. Korbonits, “Expanding role of AMPK in endocrinology,” Trends in Endocrinology and Metabolism, vol. 17, no. 5, pp. 205–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. W. W. Winder, “Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle,” Journal of Applied Physiology, vol. 91, no. 3, pp. 1017–1028, 2001. View at Scopus
  157. B. Viollet, L. Lantier, J. Devin-Leclerc et al., “Targeting the AMPK pathway for the treatment of type 2 diabetes,” Frontiers in Bioscience, vol. 14, no. 9, pp. 3380–3400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes,” Endocrine Reviews, vol. 23, no. 5, pp. 599–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  159. W. W. Winder and D. G. Hardie, “Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise,” American Journal of Physiology, vol. 270, no. 2, pp. E299–E304, 1996. View at Scopus
  160. N. Ruderman and J. S. Flier, “Chewing the fat–ACC and energy balance,” Science, vol. 291, no. 5513, pp. 2558–2559, 2001. View at Publisher · View at Google Scholar · View at Scopus
  161. R. Bergeron, J. M. Ren, K. S. Cadman et al., “Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis,” American Journal of Physiology, vol. 281, no. 6, pp. E1340–E1346, 2001. View at Scopus
  162. R. Mackenzie, “New NICE guidelines for hypertension,” British Medical Journal, vol. 343, Article ID d5644, 2011. View at Publisher · View at Google Scholar
  163. J. Eriksson, S. Taimela, and V. A. Koivisto, “Exercise and the metabolic syndrome,” Diabetologia, vol. 40, no. 2, pp. 125–135, 1997. View at Publisher · View at Google Scholar · View at Scopus
  164. E. R. Miller III, T. P. Erlinger, D. R. Young et al., “Results of the diet, exercise, and weight loss intervention trial (DEW-IT),” Hypertension, vol. 40, no. 5, pp. 612–618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Hermansen, “Diet, blood pressure and hypertension,” British Journal of Nutrition, vol. 83, no. 1, pp. S113–S119, 2000. View at Scopus
  166. E. A. Francischetti and V. A. Genelhu, “Obesity-hypertension: an ongoing pandemic,” International Journal of Clinical Practice, vol. 61, no. 2, pp. 269–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. K. Rahmouni, W. G. Haynes, D. A. Morgan, and A. L. Mark, “Selective resistance to central neural administration of leptin in agouti obese mice,” Hypertension, vol. 39, no. 2, pp. 486–490, 2002. View at Publisher · View at Google Scholar · View at Scopus
  168. N. Eikelis, M. Schlaich, A. Aggarwal, D. Kaye, and M. Esler, “Interactions between leptin and the human sympathetic nervous system,” Hypertension, vol. 41, no. 5, pp. 1072–1079, 2003. View at Publisher · View at Google Scholar · View at Scopus
  169. E. W. Shek, M. W. Brands, and J. E. Hall, “Chronic leptin infusion increases arterial pressure,” Hypertension, vol. 31, no. 1, pp. 409–414, 1998. View at Scopus
  170. J. C. Dunbar, Y. Hu, and H. Lu, “Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats,” Diabetes, vol. 46, no. 12, pp. 2040–2043, 1997. View at Scopus
  171. P. Quehenberger, M. Exner, R. Sunder-Plassmann et al., “Leptin induces endothelin-1 in endothelial cells in vitro,” Circulation Research, vol. 90, no. 6, pp. 711–718, 2002. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Bouloumié, T. Marumo, M. Lafontan, and R. Busse, “Leptin induces oxidative stress in human endothelial cells,” The FASEB Journal, vol. 13, no. 10, pp. 1231–1238, 1999. View at Scopus
  173. I. Fleming and R. Busse, “Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase,” American Journal of Physiology, vol. 284, no. 1, pp. R1–R12, 2003. View at Scopus
  174. T. Fukai, M. R. Siegfried, M. Ushio-Fukai, Y. Cheng, G. Kojda, and D. G. Harrison, “Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 631–1639, 2000. View at Scopus
  175. G. Kojda, Y. C. Cheng, J. Burchfield, and D. G. Harrison, “Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene,” Circulation, vol. 103, no. 23, pp. 2839–2844, 2001. View at Scopus
  176. R. Hambrecht, V. Adams, S. Erbs et al., “Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase,” Circulation, vol. 107, no. 25, pp. 3152–3158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. R. Hambrecht, A. Wolf, S. Gielen et al., “Effect of exercise on coronary endothelial function in patients with coronary artery disease,” The New England Journal of Medicine, vol. 342, no. 7, pp. 454–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Hambrecht, S. Gielen, A. Linke et al., “Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial,” Journal of the American Medical Association, vol. 283, no. 23, pp. 3095–3101, 2000. View at Scopus
  179. S. Gielen, G. Schuler, and V. Adams, “Cardiovascular effects of exercise training: molecular mechanisms,” Circulation, vol. 122, no. 12, pp. 1221–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. F. R. M. Laurindo, M. D. A. Pedro, H. V. Barbeiro et al., “Vascular free radical release: ex vivo and in vivo evidence for a flow- dependent endothelial mechanism,” Circulation Research, vol. 74, no. 4, pp. 700–709, 1994. View at Scopus
  181. G. W. De Keulenaer, D. C. Chappell, N. Ishizaka, R. M. Nerem, R. Wayne Alexander, and K. K. Griendling, “Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase,” Circulation Research, vol. 82, no. 10, pp. 1094–1101, 1998. View at Scopus
  182. G. R. Drummond, H. Cai, M. E. Davis, S. Ramasamy, and D. G. Harrison, “Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide,” Circulation Research, vol. 86, no. 3, pp. 347–354, 2000. View at Scopus
  183. H. Cai, M. E. Davis, G. R. Drummond, and D. G. Harrison, “Induction of endothelial NO synthase by hydrogen peroxide via a Ca2+/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 10, pp. 1571–1576, 2001. View at Scopus
  184. J. W. E. Rush, J. R. Turk, and M. H. Laughlin, “Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium,” American Journal of Physiology, vol. 284, no. 4, pp. H1378–H1387, 2003. View at Scopus
  185. S. Maeda, J. Sugawara, M. Yoshizawa et al., “Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance,” Acta Physiologica, vol. 196, no. 2, pp. 223–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. F. P. Leung, L. M. Yung, I. Laher, X. Yao, Z. Y. Chen, and Y. Huang, “Exercise, vascular wall and cardiovascular diseases: an update (part 1),” Sports Medicine, vol. 38, no. 12, pp. 1009–1024, 2008. View at Scopus