About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 407978, 3 pages
http://dx.doi.org/10.1155/2012/407978
Editorial

Redox Biology of Exercise

1Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
2Department of Health, Exercise and Sport Sciences, The University of New Mexico, Albuquerque, NM 87131, USA
3Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
4Department of Health, Leisure, and Exercise Science, Appalachian State University, Boone, NC 28608, USA

Received 26 August 2012; Accepted 26 August 2012

Copyright © 2012 Michalis G. Nikolaidis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Banerjee and W. Smith, “Thematic minireview series on redox sensing and regulation,” The Journal of Biological Chemistry, vol. 287, no. 7, pp. 4395–4396, 2012. View at Publisher · View at Google Scholar
  2. R. Bottinelli and H. Westerblad, “Reactive oxygen and nitrogen species in skeletal muscle: acute and long-term effects,” Journal of Physiology, vol. 589, no. 9, pp. 2117–2118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. P. C. Dorrestein and K. S. Carroll, “'Omics' of natural products and redox biology,” Current Opinion in Chemical Biology, vol. 15, no. 1, pp. 3–4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Horst Lillig and C. Berndt, “Preface to the special issue on redox control of cell function,” Biochimica et Biophysica Acta, vol. 1780, no. 11, p. 1169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. B. Reid, “Editorial,” Journal of Applied Physiology, vol. 102, no. 4, pp. 1299–1300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. J. Forman, M. Maiorino, and F. Ursini, “Signaling functions of reactive oxygen species,” Biochemistry, vol. 49, no. 5, pp. 835–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Stubbe and W. A. Van Der Donk, “Protein radicals in enzyme catalysis. [Chemical Reviews 1998, 98, 705–762],” Chemical Reviews, vol. 7, no. 2, pp. 2661–2662, 1998. View at Scopus
  8. W. Lesniak, V. L. Pecoraro, and J. Schacht, “Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species,” Chemical Research in Toxicology, vol. 18, no. 2, pp. 357–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Herrmann and D. Tobias, “Redox biology on the rise,” Biological Chemistry, vol. 393, no. 9, pp. 999–1004, 2012.