About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 458276, 15 pages
http://dx.doi.org/10.1155/2012/458276
Review Article

Therapeutic Targeting of Redox Signaling in Myofibroblast Differentiation and Age-Related Fibrotic Disease

1Department of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
2Institute for Biomedical Aging Research, Austrian Academy of Sciences, 6020 Innsbruck, Austria

Received 29 June 2012; Accepted 18 September 2012

Academic Editor: Paula Ludovico

Copyright © 2012 Natalie Sampson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Hinz, S. H. Phan, V. J. Thannickal, et al., “Recent developments in myofibroblast biology: paradigms for connective tissue remodeling,” The American Journal of Pathology, vol. 180, no. 4, pp. 1340–1355, 2012.
  2. G. Gabbiani, “The myofibroblast in wound healing and fibrocontractive diseases,” Journal of Pathology, vol. 200, no. 4, pp. 500–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Sampson, R. Koziel, C. Zenzmaier et al., “ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma,” Molecular Endocrinology, vol. 25, no. 3, pp. 503–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. T. Grazul-Bilska, M. L. Johnson, J. J. Bilski et al., “Wound healing: the role of growth factors,” Drugs of Today, vol. 39, no. 10, pp. 787–800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Haase, R. Evans, R. Pofahl, and F. M. Watt, “Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1 and EGF-dependent signalling pathways,” Journal of Cell Science, vol. 116, no. 15, pp. 3227–3238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Desmouliere, M. Redard, I. Darby, and G. Gabbiani, “Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar,” American Journal of Pathology, vol. 146, no. 1, pp. 56–66, 1995. View at Scopus
  7. J. I. Jun and L. F. Lau, “Cellular senescence controls fibrosis in wound healing,” Aging, vol. 2, no. 9, pp. 627–631, 2010. View at Scopus
  8. G. N. Pitiyage, P. Slijepcevic, A. Gabrani et al., “Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases,” Journal of Pathology, vol. 223, no. 5, pp. 604–617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Schissel and M. D. Layne, “Telomerase, myofibroblasts, and pulmonary fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 34, no. 5, pp. 520–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. D. Adams, “Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence,” Molecular Cell, vol. 36, no. 1, pp. 2–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gosain and L. A. DiPietro, “Aging and wound healing,” World Journal of Surgery, vol. 28, no. 3, pp. 321–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Kis, X. Liu, and J. S. Hagood, “Myofibroblast differentiation and survival in fibrotic disease,” Expert Reviews in Molecular Medicine, vol. 13, article e27, 2011.
  13. S. Ueha, F. H. Shand, and K. Matsushima, “Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis,” Frontiers in Immunology, vol. 3, p. 71, 2012.
  14. M. Amano, M. Nakayama, and K. Kaibuchi, “Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity,” Cytoskeleton, vol. 67, no. 9, pp. 545–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown, “Myofibroblasts and mechano: regulation of connective tissue remodelling,” Nature Reviews Molecular Cell Biology, vol. 3, no. 5, pp. 349–363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Kojima, A. Acar, E. N. Eaton et al., “Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 20009–20014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Ronnov-Jessen and O. W. Petersen, “Induction of α-smooth muscle actin by transforming growth factor-β1 in quiescent human breast gland fibroblasts,” Laboratory Investigation, vol. 68, no. 6, pp. 696–707, 1993. View at Scopus
  18. A. Desmouliere, A. Geinoz, F. Gabbiani, et al., “Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts,” Journal of Cell Biology, vol. 122, no. 1, pp. 103–111, 1993. View at Scopus
  19. D. M. Peehl and R. G. Sellers, “Induction of smooth muscle cell phenotype in cultured human prostatic stromal cells,” Experimental Cell Research, vol. 232, no. 2, pp. 208–215, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Cucoranu, R. Clempus, A. Dikalova et al., “NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts,” Circulation Research, vol. 97, no. 9, pp. 900–907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. D. Bondi, N. Manickam, D. Y. Lee et al., “NAD(P)H oxidase mediates TGF-β1-induced activation of kidney myofibroblasts,” Journal of the American Society of Nephrology, vol. 21, no. 1, pp. 93–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. X. Jiang, X. Chen, N. Serizawa, et al., “Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo,” Free Radical Biology & Medicine, vol. 53, no. 2, pp. 289–296, 2012.
  23. T. R. Dunkern, D. Feurstein, G. A. Rossi, F. Sabatini, and A. Hatzelmann, “Inhibition of TGF-β induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase,” European Journal of Pharmacology, vol. 572, no. 1, pp. 12–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Biernacka, M. Dobaczewski, and N. G. Frangogiannis, “TGF-beta signaling in fibrosis,” Growth Factors, vol. 29, no. 5, pp. 196–202, 2011.
  25. G. Untergasser, R. Gander, C. Lilg, G. Lepperdinger, E. Plas, and P. Berger, “Profiling molecular targets of TGF-β1 in prostate fibroblast-to- myofibroblast transdifferentiation,” Mechanisms of Ageing and Development, vol. 126, no. 1, pp. 59–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Folkman, M. Klagsbrun, J. Sasse, M. Wadzinski, D. Ingber, and I. Vlodavsky, “A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane,” American Journal of Pathology, vol. 130, no. 2, pp. 393–400, 1988. View at Scopus
  27. G. S. Schultz and A. Wysocki, “Interactions between extracellular matrix and growth factors in wound healing,” Wound Repair and Regeneration, vol. 17, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. R. Senger, K. P. Claffey, J. E. Benes, C. A. Perruzzi, A. P. Sergiou, and M. Detmar, “Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 13612–13617, 1997. View at Scopus
  29. J. Rosenbloom, S. V. Castro, and S. A. Jimenez, “Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies,” Annals of Internal Medicine, vol. 152, no. 3, pp. 159–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. M. Mak, A. J. Kwong, E. Chu, et al., “Hepatic steatosis, fibrosis, and cancer in elderly cadavers,” The Anatomical Record (Hoboken), vol. 295, no. 1, pp. 40–50, 2012.
  31. J. T. Isaacs, “Etiology of benign prostatic hyperplasia,” European Urology, vol. 25, no. 1, pp. 6–9, 1994. View at Scopus
  32. N. Sampson, G. Untergasser, E. Plas, and P. Berger, “The ageing male reproductive tract,” Journal of Pathology, vol. 211, no. 2, pp. 206–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Pannarale, R. Carbone, G. Del Mastro et al., “The aging kidney: structural changes,” Journal of Nephrology, vol. 23, no. 15, pp. S37–S40, 2010. View at Scopus
  34. M. Volkova, Y. Zhang, A. C. Shaw, et al., “The role of Toll-like receptors in age-associated lung diseases,” The Journals of Gerontology A, vol. 67, no. 3, pp. 247–253, 2012.
  35. D. F. Dai, T. Chen, S. C. Johnson, et al., “Cardiac aging: from molecular mechanisms to significance in human health and disease,” Antioxidants & Redox Signaling, vol. 16, no. 12, pp. 1492–1526, 2012.
  36. H. Nakagawa and S. Maeda, “Molecular mechanisms of liver injury and hepatocarcinogenesis: focusing on the role of stress-activated MAPK,” Pathology Research International, vol. 2012, Article ID 172894, 2012.
  37. K. S. Sfanos and A. M. De Marzo, “Prostate cancer and inflammation: the evidence,” Histopathology, vol. 60, no. 1, pp. 199–215, 2012.
  38. M. Otranto, V. Sarrazy, F. Bonte, et al., “The role of the myofibroblast in tumor stroma remodeling,” Cell Adhesion & Migration, vol. 6, no. 3, 2012.
  39. J. A. Tuxhorn, G. E. Ayala, M. J. Smith, V. C. Smith, T. D. Dang, and D. R. Rowley, “Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling,” Clinical Cancer Research, vol. 8, no. 9, pp. 2912–2923, 2002. View at Scopus
  40. M. Ao, O. E. Franco, D. Park, D. Raman, K. Williams, and S. W. Hayward, “Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium,” Cancer Research, vol. 67, no. 9, pp. 4244–4253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Yang, J. A. Tuxhorn, S. J. Ressler, S. J. McAlhany, T. D. Dang, and D. R. Rowley, “Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis,” Cancer Research, vol. 65, no. 19, pp. 8887–8895, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Tuxhorn, S. J. McAlhany, F. Yang, T. D. Dang, and D. R. Rowley, “Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model,” Cancer Research, vol. 62, no. 21, pp. 6021–6025, 2002. View at Scopus
  43. P. Lu, K. Takai, V. M. Weaver, et al., “Extracellular matrix degradation and remodeling in development and disease,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 12, 2011.
  44. H. Ikushima and K. Miyazono, “TGFβ 2 signalling: a complex web in cancer progression,” Nature Reviews Cancer, vol. 10, no. 6, pp. 415–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Chabaud, M. P. Corriveau, T. Grodzicky et al., “Decreased secretion of MMP by non-lesional late-stage scleroderma fibroblasts after selection via activation of the apoptotic fas-pathway,” Journal of Cellular Physiology, vol. 226, no. 7, pp. 1907–1914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C. K. Garcia, “Idiopathic pulmonary fibrosis: update on genetic discoveries,” Proceedings of the American Thoracic Society, vol. 8, no. 2, pp. 158–162, 2011.
  47. J. T. Cronkhite, C. Xing, G. Raghu et al., “Telomere shortening in familial and sporadic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 7, pp. 729–737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Degryse, X. C. Xu, J. L. Newman, et al., “Telomerase deficiency does not alter bleomycin-induced fibrosis in mice,” Experimental Lung Research, vol. 38, no. 3, pp. 124–134, 2012.
  49. J. C. Horowitz, D. S. Rogers, V. Sharma et al., “Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts,” Cellular Signalling, vol. 19, no. 4, pp. 761–771, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Kulasekaran, C. A. Scavone, D. S. Rogers, D. A. Arenberg, V. J. Thannickal, and J. C. Horowitz, “Endothelin-1 and transforming growth factor-β1 independently induce fibroblast resistance to apoptosis via AKT activation,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 4, pp. 484–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Hu, D. C. Tack, T. Liu, Z. Wu, M. R. Ullenbruch, and S. H. Phan, “Role of Smad3 in the regulation of rat telomerase reverse transcriptase by TGFβ,” Oncogene, vol. 25, no. 7, pp. 1030–1041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Li, D. Xu, J. Li, M. C. Berndt, and J. P. Liu, “Transforming growth factor β suppresses human telomerase reverse transcriptase (hTERT) by Smad3 interactions with c-Myc and the hTERT gene,” Journal of Biological Chemistry, vol. 281, no. 35, pp. 25588–25600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Beyer, G. Schett, O. Distler, and J. H. W. Distler, “Animal models of systemic sclerosis: prospects and limitations,” Arthritis and Rheumatism, vol. 62, no. 10, pp. 2831–2844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Gauldie and M. Kolb, “Animal models of pulmonary fibrosis: how far from effective reality?” American Journal of Physiology, vol. 294, no. 2, p. L151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. B. B. Moore and C. M. Hogaboam, “Murine models of pulmonary fibrosis,” American Journal of Physiology, vol. 294, no. 2, pp. L152–L160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Sun and K. T. Weber, “Animal models of cardiac fibrosis,” Methods in Molecular Medicine, vol. 117, pp. 273–290, 2005. View at Scopus
  57. C. Weiler-Normann, J. Herkel, and A. W. Lohse, “Mouse models of liver fibrosis,” Zeitschrift fur Gastroenterologie, vol. 45, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Zeisberg, M. A. Soubasakos, and R. Kalluri, “Animal models of renal fibrosis,” Methods in Molecular Medicine, vol. 117, pp. 261–272, 2005. View at Scopus
  59. P. Roy-Burman, H. Wu, W. C. Powell, J. Hagenkord, and M. B. Cohen, “Genetically defined mouse models that mimic natural aspects of human prostate cancer development,” Endocrine-Related Cancer, vol. 11, no. 2, pp. 225–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Sharma and N. Schreiber-Agus, “Mouse models of prostate cancer,” Oncogene, vol. 18, no. 38, pp. 5349–5355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. J. P. Mizgerd and S. J. Skerrett, “Animal models of human pneumonia,” American Journal of Physiology, vol. 294, no. 3, pp. L387–L398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Rowden, “Macrophages and dendritic cells in the skin. The skin immune system (SIS),” in Cutaneous Immunology and Clinical Immunodermatology, J. D. Bos, Ed., pp. 104–146, CRC Press, New York, NY, USA, 1997.
  63. E. Bell, B. Ivarsson, and C. Merrill, “Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 3, pp. 1274–1278, 1979. View at Scopus
  64. R. H. Cunnington, B. Wang, S. Ghavami, K. L. Bathe, S. G. Rattan, and I. M. C. Dixon, “Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility,” American Journal of Physiology, vol. 300, no. 1, pp. C176–C186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Kohyama, X. Liu, F. Q. Wen et al., “PDE4 inhibitors attenuate fibroblast chemotaxis and contraction of native collagen gels,” American Journal of Respiratory Cell and Molecular Biology, vol. 26, no. 6, pp. 694–701, 2002. View at Scopus
  66. H. Pan, J. Chen, J. Xu, M. Chen, and R. Ma, “Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts.,” Molecular Vision, vol. 15, pp. 2279–2286, 2009. View at Scopus
  67. Q. Shi, X. Liu, Y. Bai, et al., “In vitro effects of pirfenidone on cardiac fibroblasts: proliferation, myofibroblast differentiation, migration and cytokine secretion,” PLoS ONE, vol. 6, no. 11, article e28134, 2011.
  68. C. Y. Tsai, K. I. Hata, S. Torii, M. Matsuyama, and M. Ueda, “Contraction potency of hypertrophic scar-derived fibroblasts in a connective tissue model: in vitro analysis of wound contraction,” Annals of Plastic Surgery, vol. 35, no. 6, pp. 638–646, 1995. View at Scopus
  69. F. Q. Wen, C. M. Sköld, X. D. Liu et al., “Glucocorticoids and TGF-β1 synergize in augmenting fibroblast mediated contraction of collagen gels,” Inflammation, vol. 25, no. 2, pp. 109–117, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Yokozeki, K. Moriyama, H. Shimokawa, and T. Kuroda, “Transforming growth factor-β1 modulates myofibroblastic phenotype of rat palatal fibroblasts in Vitro,” Experimental Cell Research, vol. 231, no. 2, pp. 328–336, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Y. Zhang, M. Gharaee-Kermani, K. Zhang, S. Karmiol, and S. H. Phan, “Lung fibroblast α-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis,” American Journal of Pathology, vol. 148, no. 2, pp. 527–537, 1996. View at Scopus
  72. H. Rumpold, K. Mascher, G. Untergasser, E. Plas, M. Hermann, and P. Berger, “Trans-differentiation of prostatic stromal cells leads to decreased glycoprotein hormone α production,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 11, pp. 5297–5303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Zenzmaier, N. Sampson, D. Pernkopf, E. Plas, G. Untergasser, and P. Berger, “Attenuated proliferation and trans-differentiation of prostatic stromal cells indicate suitability of phosphodiesterase type 5 inhibitors for prevention and treatment of benign prostatic hyperplasia,” Endocrinology, vol. 151, no. 8, pp. 3975–3984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Hecker, R. Vittal, T. Jones et al., “NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury,” Nature Medicine, vol. 15, no. 9, pp. 1077–1081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Amara, D. Goven, F. Prost, R. Muloway, B. Crestani, and J. Boczkowski, “NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFβ1-induced fibroblast differentiation into myofibroblasts,” Thorax, vol. 65, no. 8, pp. 733–738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Li, D. Wang, J. Lucas et al., “Atrial natriuretic peptide inhibits transforming growth factor β-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts,” Circulation Research, vol. 102, no. 2, pp. 185–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Masuyama, T. Tsuruda, Y. Sekita et al., “Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart,” Hypertension Research, vol. 32, no. 7, pp. 597–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Scopus
  79. H. J. Forman, J. M. Fukuto, T. Miller, H. Zhang, A. Rinna, and S. Levy, “The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal,” Archives of Biochemistry and Biophysics, vol. 477, no. 2, pp. 183–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Jiang, Y. Zhang, and G. J. Dusting, “NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair,” Pharmacological Reviews, vol. 63, no. 1, pp. 218–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Altenhofer, P. W. Kleikers, K. A. Radermacher, et al., “The NOX toolbox: validating the role of NADPH oxidases in physiology and disease,” Cellular and Molecular Life Sciences, vol. 69, no. 14, pp. 2327–2343, 2012.
  82. K. D. Martyn, L. M. Frederick, K. Von Loehneysen, M. C. Dinauer, and U. G. Knaus, “Functional analysis of NOX4 reveals unique characteristics compared to other NADPH oxidases,” Cellular Signalling, vol. 18, no. 1, pp. 69–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Serrander, L. Cartier, K. Bedard et al., “NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation,” Biochemical Journal, vol. 406, no. 1, pp. 105–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. S. I. Dikalov, A. E. Dikalova, A. T. Bikineyeva, H. H. H. W. Schmidt, D. G. Harrison, and K. K. Griendling, “Distinct roles of NOX1 and NOX4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production,” Free Radical Biology and Medicine, vol. 45, no. 9, pp. 1340–1351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. I. Takac, K. Schröder, L. Zhang et al., “The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase NOX4,” Journal of Biological Chemistry, vol. 286, no. 15, pp. 13304–13313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Trachootham, W. Lu, M. A. Ogasawara, N. R. D. Valle, and P. Huang, “Redox regulation of cell survival,” Antioxidants and Redox Signaling, vol. 10, no. 8, pp. 1343–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. J. L. Barnes and Y. Gorin, “Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases,” Kidney International, vol. 79, no. 9, pp. 944–956, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. K. A. Graham, M. Kulawiec, K. M. Owens et al., “NADPH oxidase 4 is an oncoprotein localized to mitochondria,” Cancer Biology and Therapy, vol. 10, no. 3, pp. 223–231, 2010. View at Scopus
  90. J. Kuroda, T. Ago, S. Matsushima, P. Zhai, M. D. Schneider, and J. Sadoshima, “NADPH oxidase 4 (NOX4) is a major source of oxidative stress in the failing heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 35, pp. 15565–15570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. S. J. Guo, L. Y. Wu, W. L. Shen, et al., “Gene profile for differentiation of vascular adventitial myofibroblasts,” Sheng Li Xue Bao, vol. 58, no. 4, pp. 337–344, 2006.
  92. T. Hu, S. P. Ramachandrarao, S. Siva et al., “Reactive oxygen species production via NADPH oxidase mediates TGF-β-induced cytoskeletal alterations in endothelial cells,” American Journal of Physiology, vol. 289, no. 4, pp. F816–F825, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. R. E. Clempus, D. Sorescu, A. E. Dikalova et al., “NOX4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 42–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Schröder, K. Wandzioch, I. Helmcke, and R. P. Brandes, “NOX4 acts as a switch between differentiation and proliferation in preadipocytes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 2, pp. 239–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. J. C. Pache, S. Carnesecchi, C. Deffert et al., “NOX-4 is expressed in thickened pulmonary arteries in idiopathic pulmonary fibrosis,” Nature Medicine, vol. 17, no. 1, pp. 31–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Gorin, K. Block, J. Hernandez et al., “NOX4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney,” Journal of Biological Chemistry, vol. 280, no. 47, pp. 39616–39626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. R. M. Liu, J. Choi, J. H. Wu et al., “Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor β1-induced expression of plasminogen activator inhibitor 1 in fibroblasts,” Journal of Biological Chemistry, vol. 285, no. 21, pp. 16239–16247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Block, A. Eid, K. K. Griendling, D. Y. Lee, Y. Wittrant, and Y. Gorin, “NOX4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 24061–24076, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. F. P. Bellinger, A. V. Raman, M. A. Reeves, and M. J. Berry, “Regulation and function of selenoproteins in human disease,” Biochemical Journal, vol. 422, no. 1, pp. 11–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. S. C. Low, E. Grundner-Culemann, J. W. Harney, and M. J. Berry, “SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy,” EMBO Journal, vol. 19, no. 24, pp. 6882–6890, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. M. S. Crane, A. F. Howie, J. R. Arthur, F. Nicol, L. K. Crosley, and G. J. Beckett, “Modulation of thioredoxin reductase-2 expression in EAhy926 cells: implications for endothelial selenoprotein hierarchy,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1191–1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. V. Mostert, I. Dreher, J. Köhrle, S. Wolff, and J. Abel, “Modulation of selenoprotein P expression by TGF-β1 is mediated by Smad proteins,” BioFactors, vol. 14, no. 1–4, pp. 135–142, 2001. View at Scopus
  104. V. Mostert, S. Wolff, I. Dreher, J. Köhrle, and J. Abel, “Identification of an element within the promoter of human selenoprotein P responsive to transforming growth factor-β,” European Journal of Biochemistry, vol. 268, no. 23, pp. 6176–6181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Mezey, X. Liu, and J. J. Potter, “The combination of selenium and vitamin e inhibits type i collagen formation in cultured hepatic stellate cells,” Biological Trace Element Research, vol. 140, no. 1, pp. 82–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Contempre, O. Le Moine, J. E. Dumont, J. F. Denef, and M. C. Many, “Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor β (TGF-β),” Molecular and Cellular Endocrinology, vol. 124, no. 1-2, pp. 7–15, 1996. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Ding, J. J. Potter, X. Liu, M. S. Torbenson, and E. Mezey, “Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration,” Biological Trace Element Research, vol. 133, no. 1, pp. 83–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. B. C. Pence, E. Delver, and D. M. Dunn, “Effects of dietary selenium on UVB-induced skin carcinogenesis and epidermal antioxidant status,” Journal of Investigative Dermatology, vol. 102, no. 5, pp. 759–761, 1994. View at Scopus
  109. V. Diwadkar-Navsariwala, G. S. Prins, S. M. Swanson et al., “Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 21, pp. 8179–8184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Selenius, A. K. Rundlöf, E. Olm, A. P. Fernandes, and M. Björnstedt, “Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer,” Antioxidants and Redox Signaling, vol. 12, no. 7, pp. 867–880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. A. J. Duffield-Lillico, B. L. Dalkin, M. E. Reid et al., “Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial,” BJU International, vol. 91, no. 7, pp. 608–612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Hurst, L. Hooper, T. Norat, et al., “Selenium and prostate cancer: systematic review and meta-analysis,” The American Journal of Clinical Nutrition, vol. 96, no. 1, pp. 111–122, 2012.
  113. F. Murad, “Nitric oxide and cyclic GMP in cell signaling and drug development,” The New England Journal of Medicine, vol. 355, no. 19, pp. 2003–2011, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. R. C. Rosen and J. B. Kostis, “Overview of phosphodiesterase 5 inhibition in erectile dysfunction,” American Journal of Cardiology, vol. 92, no. 9, pp. 9M–18M, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Houtchens, D. Martin, and J. R. Klinger, “Diagnosis and management of pulmonary arterial hypertension,” Pulmonary Medicine, vol. 2011, Article ID 845864, 2011.
  116. M. Oelke, F. Giuliano, V. Mirone, et al., “Monotherapy with tadalafil or tamsulosin similarly improved lower urinary tract symptoms suggestive of benign prostatic hyperplasia in an international, randomised, parallel, placebo-controlled clinical trial,” European Urology, vol. 61, no. 5, pp. 917–925, 2012.
  117. J. I. Martínez-Salamanca, J. Carballido, I. Eardley et al., “Phosphodiesterase type 5 inhibitors in the management of non-neurogenic male lower urinary tract symptoms: Critical analysis of current evidence,” European Urology, vol. 60, no. 3, pp. 527–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Gacci, I. Eardley, F. Giuliano et al., “Critical analysis of the relationship between sexual dysfunctions and lower urinary tract symptoms due to benign prostatic hyperplasia,” European Urology, vol. 60, no. 4, pp. 809–825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. S. J. S. Grimsley, M. H. Khan, and G. E. Jones, “Mechanism of phosphodiesterase 5 inhibitor relief of prostatitis symptoms,” Medical Hypotheses, vol. 69, no. 1, pp. 25–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Takeda, “Effects of phosphodiesterase type 5 inhibitor on the contractility of prostate tissues and urethral pressure responses in a rat model of benign prostate hyperplasia: commentary,” International Journal of Urology, vol. 14, no. 10, p. 951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Ückert, M. Sormes, G. Kedia et al., “Effects of phosphodiesterase inhibitors on tension induced by norepinephrine and accumulation of cyclic nucleotides in isolated human prostatic tissue,” Urology, vol. 71, no. 3, pp. 526–530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. A. J. Chu and J. K. Prasad, “Up-regulation by human recombinant transforming growth factor β-1 of collagen production in cultured dermal fibroblasts is mediated by the inhibition of nitric oxide signaling,” Journal of the American College of Surgeons, vol. 188, no. 3, pp. 271–280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. E. G. A. Valente, D. Vernet, M. G. Ferrini, A. Qian, J. Rajfer, and N. F. Gonzalez-Cadavid, “L-Arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie's fibrotic plaque and related fibroblast cultures,” Nitric Oxide—Biology and Chemistry, vol. 9, no. 4, pp. 229–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Beyer, N. Reich, S. C. Schindler, et al., “Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis,” Annals of the Rheumatic Diseases, vol. 71, no. 6, pp. 1019–1026, 2012.
  125. D. Vernet, M. G. Ferrini, E. G. Valente et al., “Effect of nitric oxide on the differentiation of fibroblasts into myofibroblasts in the Peyronie's fibrotic plaque and in its rat model,” Nitric Oxide—Biology and Chemistry, vol. 7, no. 4, pp. 262–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. M. G. Ferrini, S. Rivera, J. Moon, D. Vernet, J. Rajfer, and N. F. Gonzalez-Cadavid, “The genetic inactivation of inducible nitric oxide synthase (iNOS) intensifies fibrosis and oxidative stress in the penile corpora cavernosa in type 1 diabetes,” Journal of Sexual Medicine, vol. 7, no. 9, pp. 3033–3044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Sun, Y. Wang, C. Liu, et al., “Effects of nitric oxide on renal interstitial fibrosis in rats with unilateral ureteral obstruction,” Life Sciences, vol. 90, no. 23-24, pp. 900–909, 2012.
  128. Y. Wang, S. Krämer, T. Loof et al., “Enhancing cGMP in experimental progressive renal fibrosis: Soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition,” American Journal of Physiology, vol. 290, no. 1, pp. F167–F176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Sharkovska, P. Kalk, B. Lawrenz et al., “Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models,” Journal of Hypertension, vol. 28, no. 8, pp. 1666–1675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Geschka, A. Kretschmer, Y. Sharkovska et al., “Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive dahl rats,” PLoS ONE, vol. 6, no. 7, Article ID e21853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Knorr, C. Hirth-Dietrich, C. Alonso-Alija et al., “Nitric oxide-independent activation of soluble guanylate cyclase by BAY 60-2770 in experimental liver fibrosis,” Arzneimittel-Forschung/Drug Research, vol. 58, no. 2, pp. 71–80, 2008. View at Scopus
  132. B. Hohenstein, C. Daniel, S. Wittmann, and C. Hugo, “PDE-5 inhibition impedes TSP-1 expression, TGF-β activation and matrix accumulation in experimental glomerulonephritis,” Nephrology Dialysis Transplantation, vol. 23, no. 11, pp. 3427–3436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. G. M. Rubanyi and P. M. Vanhoutte, “Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor,” The American Journal of Physiology, vol. 250, no. 5, part 2, pp. H822–H827, 1986.
  134. N. D. Roe and J. Ren, “Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases,” Vascular Pharmacology, vol. 57, no. 5-6, pp. 168–172, 2012.
  135. Y. M. Kim, H. Bergonia, and J. R. Lancaster Jr., “Nitrogen oxide-induced autoprotection in isolated rat hepatocytes,” FEBS Letters, vol. 374, no. 2, pp. 228–232, 1995. View at Publisher · View at Google Scholar · View at Scopus
  136. E. A. Jaimes, C. Sweeney, and L. Raij, “Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production,” Hypertension, vol. 38, no. 4, pp. 877–883, 2001. View at Scopus
  137. E. P. Wei and H. A. Kontos, “H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine,” Hypertension, vol. 16, no. 2, pp. 162–169, 1990. View at Scopus
  138. C. Zenzmaier, J. Kern, N. Sampson, et al., “Phosphodiesterase type 5 inhibition reverts prostate fibroblast-to-myofibroblast trans-differentiation,” Endocrinology, 2012. In press. View at Publisher · View at Google Scholar
  139. J. Ying, X. Tong, D. R. Pimentel et al., “Cysteine-674 of the sarco/endoplasmic reticulum calcium ATPase is required for the inhibition of cell migration by nitric oxide,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 783–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Adachi, R. Matsui, R. M. Weisbrod, S. Najibi, and R. A. Cohen, “Reduced sarco/endoplasmic reticulum Ca2+ uptake activity can account for the reduced response to NO, but not sodium nitroprusside, in hypercholesterolemic rabbit aorta,” Circulation, vol. 104, no. 9, pp. 1040–1045, 2001. View at Scopus
  141. X. Tong, X. Hou, D. Jourd'Heuil, R. M. Weisbrod, and R. A. Cohen, “Upregulation of NOX4 by TGFβ1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic zucker rat,” Circulation Research, vol. 107, no. 8, pp. 975–983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. X. Tong and K. Schröder, “NADPH oxidases are responsible for the failure of nitric oxide to inhibit migration of smooth muscle cells exposed to high glucose,” Free Radical Biology and Medicine, vol. 47, no. 11, pp. 1578–1583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Wedgwood, R. H. Steinhorn, M. Bunderson et al., “Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn,” American Journal of Physiology, vol. 289, no. 4, pp. L660–L666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Gerassimou, A. Kotanidou, Z. Zhou, D. D. C. Simoes, C. Roussos, and A. Papapetropoulos, “Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species,” British Journal of Pharmacology, vol. 150, no. 8, pp. 1084–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Meurer, S. Pioch, S. Gross, and W. Müller-Esterl, “Reactive oxygen species induce tyrosine phosphorylation of and Src kinase recruitment to NO-sensitive guanylyl cyclase,” Journal of Biological Chemistry, vol. 280, no. 39, pp. 33149–33156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. K. S. Murthy, “Inhibitory phosphorylation of soluble guanylyl cyclase by muscarinic m2 receptors via Gβγ-dependent activation of c-Src kinase,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 1, pp. 183–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. N. Abdelaziz, F. Colombo, I. Mercier, and A. Calderone, “Nitric oxide attenuates the expression of transforming growth factor-β3 mRNA in rat cardiac fibroblasts via destabilization,” Hypertension, vol. 38, no. 2, pp. 261–266, 2001. View at Scopus
  148. A. Bellocq, E. Azoulay, S. Marullo et al., “Reactive oxygen and nitrogen intermediates increase transforming growth factor-β1 release from human epithelial alveolar cells through two different mechanisms,” American Journal of Respiratory Cell and Molecular Biology, vol. 21, no. 1, pp. 128–136, 1999. View at Scopus
  149. P. R. Bachiller, H. Nakanishi, and J. D. Roberts, “Transforming growth factor-β modulates the expression of nitric oxide signaling enzymes in the injured developing lung and in vascular smooth muscle cells,” American Journal of Physiology, vol. 298, no. 3, pp. L324–L334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Douglass, K. Wallace, R. Parr et al., “Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury,” Journal of Hepatology, vol. 49, no. 1, pp. 88–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Bocchino, S. Agnese, E. Fagone et al., “Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis,” PLoS ONE, vol. 5, no. 11, Article ID e14003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. C. Vozenin-Brotons, V. Sivan, N. Gault et al., “Antifibrotic action of Cu/Zn SOD is mediated by TGF-β1 repression and phenotypic reversion of myofibroblasts,” Free Radical Biology and Medicine, vol. 30, no. 1, pp. 30–42, 2001. View at Publisher · View at Google Scholar · View at Scopus
  153. O. Maltseva, P. Folger, D. Zekaria, S. Petridou, and S. K. Masur, “Fibroblast growth factor reversal of the corneal myofibroblast phenotype,” Investigative Ophthalmology and Visual Science, vol. 42, no. 11, pp. 2490–2495, 2001. View at Scopus
  154. M. G. Ferrini, I. Kovanecz, G. Nolazco, J. Rajfer, and N. F. Gonzalez-Cadavid, “Effects of long-term vardenafil treatment on the development of fibrotic plaques in a rat model of Peyronie's disease,” BJU International, vol. 97, no. 3, pp. 625–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Leask, “Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation,” Circulation Research, vol. 106, no. 11, pp. 1675–1680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. C. L. Miller, Y. Cai, M. Oikawa, et al., “Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart,” Basic Research in Cardiology, vol. 106, no. 6, pp. 1023–1039, 2011.