About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 601836, 8 pages
http://dx.doi.org/10.1155/2012/601836
Review Article

Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity

1Institute of Microbiology of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic
2Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 128 44 Prague 2, Czech Republic

Received 1 June 2012; Accepted 9 July 2012

Academic Editor: Heinz D. Osiewacz

Copyright © 2012 Libuše Váchová et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kaeberlein, “Lessons on longevity from budding yeast,” Nature, vol. 464, no. 7288, pp. 513–519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Fabrizio, L. L. Liou, V. N. Moy et al., “SOD2 functions downstream of Sch9 to extend longevity in yeast,” Genetics, vol. 163, no. 1, pp. 35–46, 2003. View at Scopus
  3. P. Fabrizio, F. Pozza, S. D. Pletcher, C. M. Gendron, and V. D. Longo, “Regulation of longevity and stress resistance by Sch9 in yeast,” Science, vol. 292, no. 5515, pp. 288–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. W. Powers III, M. Kaeberlein, S. D. Caldwell, B. K. Kennedy, and S. Fields, “Extension of chronological life span in yeast by decreased TOR pathway signaling,” Genes and Development, vol. 20, no. 2, pp. 174–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Wei, P. Fabrizio, F. Madia et al., “Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension,” PLoS Genetics, vol. 5, no. 5, Article ID e1000467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. R. Burtner, C. J. Murakami, B. K. Kennedy, and M. Kaeberlein, “A molecular mechanism of chronological aging in yeast,” Cell Cycle, vol. 8, no. 8, pp. 1256–1270, 2009. View at Scopus
  7. M. A. McCormick, S. Y. Tsai, and B. K. Kennedy, “TOR and ageing: a complex pathway for a complex process,” Philosophical Transactions of the Royal Society B, vol. 366, no. 1561, pp. 17–27, 2011. View at Publisher · View at Google Scholar
  8. O. V. Leontieva and M. V. Blagosklonny, “Yeast-like chronological senescence in mammalian cells: phenomenon, mechanism and pharmacological suppression,” Aging, vol. 3, no. 11, pp. 1078–1091, 2011.
  9. M. Matecic, D. L. Smith, X. Pan et al., “A microarray-based genetic screen for yeast chronological aging factors,” PLoS Genetics, vol. 6, no. 4, Article ID e1000921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Cap, L. Stepanek, K. Harant, L. Vachova, and Z. Palkova, “Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism,” Molecular Cell, vol. 46, no. 4, pp. 436–448, 2012. View at Publisher · View at Google Scholar
  11. M. M. Klosinska, C. A. Crutchfield, P. H. Bradley, J. D. Rabinowitz, and J. R. Broach, “Yeast cells can access distinct quiescent states,” Genes and Development, vol. 25, no. 4, pp. 336–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wu, N. Zhang, A. Hayes, K. Panoutsopoulo, and S. G. Oliver, “Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3148–3153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. G. Boender, M. J. Almering, M. Dijk et al., “Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states,” Biochimica et Biophysica Acta, vol. 1813, no. 12, pp. 2133–2144, 2011. View at Publisher · View at Google Scholar
  14. L. G. Boender, A. J. van Maris, E. A. de Hulster et al., “Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures,” FEMS Yeast Research, vol. 11, no. 8, pp. 603–620, 2011. View at Publisher · View at Google Scholar
  15. D. Laporte, A. Lebaudy, A. Sahin et al., “Metabolic status rather than cell cycle signals control quiescence entry and exit,” The Journal of Cell Biology, vol. 192, no. 6, pp. 949–957, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Vachova, V. Stovicek, O. Hlavacek et al., “Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies,” The Journal of Cell Biology, vol. 194, no. 5, pp. 679–687, 2011. View at Publisher · View at Google Scholar
  17. J. R. Meunier and M. Choder, “Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression,” Yeast, vol. 15, no. 12, pp. 1159–1169, 1999.
  18. L. Váchová and Z. Palková, “Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia,” The Journal of Cell Biology, vol. 169, no. 5, pp. 711–717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Palkova, L. Vachova, D. Gaskova, and H. Kucerova, “Synchronous plasma membrane electrochemical potential oscillations during yeast colony development and aging,” Molecular Membrane Biology, vol. 26, no. 4, pp. 228–235, 2009. View at Publisher · View at Google Scholar
  20. P. Fabrizio, L. Battistella, R. Vardavas et al., “Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae,” The Journal of Cell Biology, vol. 166, no. 7, pp. 1055–1067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Fabrizio, S. Hoon, M. Shamalnasab et al., “Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation,” PLoS Genetics, vol. 6, no. 7, Article ID e1001024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Li, Y. Lu, L. X. Qin, Z. Bar-Joseph, M. Werner-Washburne, and L. L. Breeden, “Budding yeast SSD1-V regulates transcript levels of many longevity genes and extends chronological life span in purified quiescent cells,” Molecular Biology of the Cell, vol. 20, no. 17, pp. 3851–3864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. MacLean, N. Harris, and P. W. Piper, “Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms,” Yeast, vol. 18, no. 6, pp. 499–509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. P. W. Piper, N. L. Harris, and M. MacLean, “Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast,” Mechanisms of Ageing and Development, vol. 127, no. 9, pp. 733–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. D. Oliver, “The viable but nonculturable state in bacteria,” Journal of Microbiology, vol. 43, no. 1, pp. 93–100, 2005. View at Scopus
  26. Z. Palková, F. Devaux, M. Řičicová, L. Mináriková, S. Le Crom, and C. Jacq, “Ammonia pulses and metabolic oscillations guide yeast colony development,” Molecular Biology of the Cell, vol. 13, no. 11, pp. 3901–3914, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Palková and J. Forstová, “Yeast colonies synchronise their growth and development,” Journal of Cell Science, vol. 113, no. 11, pp. 1923–1928, 2000. View at Scopus
  28. Z. Palkova, B. Janderova, J. Gabriel, B. Zikanova, M. Pospisek, and J. Forstova, “Ammonia mediates communication between yeast colonies,” Nature, vol. 390, no. 6659, pp. 532–536, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Palkova and L. Vachova, “Ammonia signaling in yeast colony formation,” International Review of Cytology, vol. 225, pp. 229–272, 2003. View at Publisher · View at Google Scholar
  30. L. Vachova, H. Kucerova, F. Devaux, M. Ulehlova, and Z. Palkova, “Metabolic diversification of cells during the development of yeast colonies,” Environmental Microbiology, vol. 11, no. 2, pp. 494–504, 2009. View at Publisher · View at Google Scholar
  31. E. B. Gralla and J. S. Valentine, “Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous mutation rates,” Journal of Bacteriology, vol. 173, no. 18, pp. 5918–5920, 1991. View at Scopus
  32. V. D. Longo, E. B. Gralla, and J. S. Valentine, “Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo,” The Journal of Biological Chemistry, vol. 271, no. 21, pp. 12275–12280, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Čáp, L. Váchová, and Z. Palková, “Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense,” The Journal of Biological Chemistry, vol. 284, no. 47, pp. 32572–32581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Váchová, F. Devaux, H. Kučerová, M. Řičicová, C. Jacq, and Z. Palková, “Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies,” The Journal of Biological Chemistry, vol. 279, no. 36, pp. 37973–37981, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Váchová, O. Chernyavskiy, D. Strachotová et al., “Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter,” Environmental Microbiology, vol. 11, no. 7, pp. 1866–1877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Büttner, T. Eisenberg, E. Herker, D. Carmona-Gutierrez, G. Kroemer, and F. Madeo, “Why yeast cells can undergo apoptosis: death in times of peace, love, and war,” The Journal of Cell Biology, vol. 175, no. 4, pp. 521–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Carmona-Gutierrez, T. Eisenberg, S. Büttner, C. Meisinger, G. Kroemer, and F. Madeo, “Apoptosis in yeast: triggers, pathways, subroutines,” Cell Death and Differentiation, vol. 17, no. 5, pp. 763–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Allen, S. Büttner, A. D. Aragon et al., “Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures,” The Journal of Cell Biology, vol. 174, no. 1, pp. 89–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. D. Aragon, A. L. Rodriguez, O. Meirelles et al., “Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 1271–1280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Smets, R. Ghillebert, P. De Snijder et al., “Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae,” Current Genetics, vol. 56, no. 1, pp. 1–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. G. Hinnebusch, “Translational regulation of GCN4 and the general amino acid control of yeast,” Annual Review of Microbiology, vol. 59, pp. 407–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. G. S. Davidson, R. M. Joe, S. Roy et al., “The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures,” Molecular Biology of the Cell, vol. 22, no. 7, pp. 988–998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Cap, L. Vachova, and Z. Palkova, “How to survive within a yeast colony?: change metabolism or cope with stress?” Communicative & Integrative Biology, vol. 3, no. 2, pp. 198–200, 2010. View at Publisher · View at Google Scholar
  44. S. Piccirillo, M. G. White, J. C. Murphy, D. J. Law, and S. M. Honigberg, “The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies,” Genetics, vol. 184, no. 3, pp. 707–716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Engelberg, A. Mimran, H. Martinetto et al., “Multicellular stalk-like structures in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 180, no. 15, pp. 3992–3996, 1998. View at Scopus
  46. R. Scherz, V. Shinder, and D. Engelberg, “Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization,” Journal of Bacteriology, vol. 183, no. 18, pp. 5402–5413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Št'ovíček, L. Váchová, M. Kuthan, and Z. Palková, “General factors important for the formation of structured biofilm-like yeast colonies,” Fungal Genetics and Biology, vol. 47, no. 12, pp. 1012–1022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. W. Decho, “Microbial biofilms in intertidal systems: an overview,” Continental Shelf Research, vol. 20, no. 10-11, pp. 1257–1273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. J. E. Nett, H. Sanchez, M. T. Cain, and D. R. Andes, “Genetic basis of Candida Biofilm resistance due to drug-sequestering matrix glucan,” Journal of Infectious Diseases, vol. 202, no. 1, pp. 171–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. M. Joubert, G. M. Wolfaardt, and A. Botha, “Microbial exopolymers link predator and prey in a model yeast biofilm system,” Microbial Ecology, vol. 52, no. 2, pp. 187–197, 2006. View at Publisher · View at Google Scholar · View at Scopus