About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 686972, 9 pages
http://dx.doi.org/10.1155/2012/686972
Research Article

Oxidative Stress Contributes to Endothelial Dysfunction in Mouse Models of Hereditary Hemorrhagic Telangiectasia

1Molecular Structure and Function Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
2Heart and Stroke Richard Lewar Center of Excellence, University of Toronto, ON, Canada M5S 3E2
3Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8

Received 9 November 2012; Accepted 30 November 2012

Academic Editor: Sumitra Miriyala

Copyright © 2012 Mirjana Jerkic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. McDonald, P. Bayrak-Toydemir, and R. E. Pyeritz, “Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis,” Genetics in Medicine, vol. 13, no. 7, pp. 607–616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. N. P. Barbara, J. L. Wrana, and M. Letarte, “Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily,” Journal of Biological Chemistry, vol. 274, no. 2, pp. 584–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. L. David, C. Mallet, S. Mazerbourg, J. J. Feige, and S. Bailly, “Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells,” Blood, vol. 109, no. 5, pp. 1953–1961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Gallione, G. M. Repetto, E. Legius et al., “A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4),” The Lancet, vol. 363, no. 9412, pp. 852–859, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. G. Cole, M. E. Begbie, G. M. F. Wallace, and C. L. L. Shovlin, “A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5,” Journal of Medical Genetics, vol. 42, no. 7, pp. 577–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Bayrak-Toydemir, J. McDonald, N. Akarsu et al., “A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7,” American Journal of Medical Genetics A, vol. 140, no. 20, pp. 2155–2162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Berg, M. Porteous, D. Reinhardt et al., “Hereditary haemorrhagic telangiectasia: a questionnaire based study to delineate the different phenotypes caused by endoglin and ALK1 mutations,” Journal of Medical Genetics, vol. 40, no. 8, pp. 585–590, 2003. View at Scopus
  8. T. G. W. Letteboer, J. J. Mager, R. J. Snijder, et al., “Genotype-phenotype relation in hereditary hemorrhagic teleangiectasia,” Journal of Medical Genetics, vol. 43, no. 4, pp. 371–377, 2006.
  9. N. Pece-Barbara, U. Cymerman, S. Vera, D. A. Marchuk, and M. Letarte, “Expression analysis of four endoglin missense mutations suggests that haploinsufficiency is the predominant mechanism for hereditary hemorrhagic telangiectasia type 1,” Human Molecular Genetics, vol. 8, no. 12, pp. 2171–2181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Ricard, M. Bidart, C. Mallet et al., “Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations,” Blood, vol. 116, no. 9, pp. 1604–1612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Bourdeau, D. J. Dumont, and M. Letarte, “A murine model of hereditary hemorrhagic telangiectasia,” Journal of Clinical Investigation, vol. 104, no. 10, pp. 1343–1351, 1999. View at Scopus
  12. S. Srinivasan, M. A. Hanes, T. Dickens et al., “A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2,” Human Molecular Genetics, vol. 12, no. 5, pp. 473–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Jerkic, J. V. Rivas-Elena, M. Prieto, et al., “Endoglin regulates nitric oxide-dependent vasodilatation,” The FASEB Journal, vol. 18, no. 3, pp. 609–611, 2004.
  14. M. Toporsian, R. Gros, M. G. Kabir et al., “A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia,” Circulation Research, vol. 96, no. 6, pp. 684–692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Toporsian, M. Jerkic, Y. Q. Zhou et al., “Spontaneous adult-onset pulmonary arterial hypertension attributable to increased endothelial oxidative stress in a murine model of hereditary hemorrhagic telangiectasia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 3, pp. 509–517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Jerkic, M. G. Kabir, A. Davies, et al., “Pulmonary hypertension in adult Alk1 heterozygous mice due to oxidative stress,” Cardiovascular Research, vol. 92, no. 3, pp. 375–384, 2011. View at Publisher · View at Google Scholar
  17. A. C. Montezano and R. M. Touyz, “Reactive oxygen species and endothelial function - role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases,” Basic and Clinical Pharmacology and Toxicology, vol. 110, no. 1, pp. 87–94, 2012. View at Publisher · View at Google Scholar
  18. T. Seki, J. Yun, and S. P. Oh, “Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling,” Circulation Research, vol. 93, no. 7, pp. 682–689, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. I. B. Copland, D. Reynaud, C. Pace-Asciak, and M. Post, “Mechanotransduction of stretch-induced prostanoid release by fetal lung epithelial cells,” American Journal of Physiology, vol. 291, no. 3, pp. L487–L495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Finkel, “Signal transduction by reactive oxygen species,” Journal of Cellular Biology, vol. 194, no. 1, pp. 7–15, 2011. View at Publisher · View at Google Scholar
  21. G. Kojda and D. Harrison, “Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure,” Cardiovascular Research, vol. 43, no. 3, pp. 562–571, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Dikalov, K. K. Griendling, and D. G. Harrison, “Measurement of reactive oxygen species in cardiovascular studies,” Hypertension, vol. 49, no. 4, pp. 717–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Abdalla and M. Letarte, “Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease,” Journal of Medical Genetics, vol. 43, no. 2, pp. 97–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Belik, M. Jerkic, B. A. S. McIntyre et al., “Age-dependent endothelial nitric oxide synthase uncoupling in pulmonary arteries of endoglin heterozygous mice,” American Journal of Physiology, vol. 297, no. 6, pp. L1170–L1178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Trembath, J. R. Thomson, R. D. Machado, et al., “Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia,” The New England Journal of Medicine, vol. 345, no. 5, pp. 325–334, 2001. View at Publisher · View at Google Scholar
  26. B. Girerd, D. Montani, F. Coulet et al., “Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 8, pp. 851–861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Mache, A. Gamillscheg, H. H. Popper, and S. G. Haworth, “Early-life pulmonary arterial hypertension with subsequent development of diffuse pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia type 1,” Thorax, vol. 63, no. 1, pp. 85–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Machado, M. A. Aldred, V. James, et al., “Mutations of the TGF-b Type II receptor BMPR2 in pulmonary arterial hypertension,” Human Mutation, vol. 27, no. 2, pp. 121–132, 2006. View at Publisher · View at Google Scholar
  29. J. L. Cracowski, C. Cracowski, G. Bessard et al., “Increased lipid peroxidation in patients with pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 6, pp. 1038–1042, 2001. View at Scopus
  30. R. Bowers, C. Cool, R. C. Murphy, et al., “Oxidative stress in severe pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 6, pp. 764–769, 2004. View at Publisher · View at Google Scholar
  31. J. F. Santibanez, F. J. Blanco, E. M. Garrido-Martin, F. Sanz-Rodriguez, M. A. Del Pozo, and C. Bernabeu, “Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor ALK1 in endothelial caveolae,” Cardiovascular Research, vol. 77, no. 4, pp. 791–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. F. Gielis, J. Y. Lin, K. Wingler, P. E. Y. Van Schil, H. H. Schmidt, and A. L. Moens, “Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders,” Free Radical Biology and Medicine, vol. 50, no. 7, pp. 765–776, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. L. Bell, T. A. Klimova, J. Eisenbart et al., “The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production,” Journal of Cell Biology, vol. 177, no. 6, pp. 1029–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Di Lisa, N. Kaludercic, A. Carpi, R. Menabò, and M. Giorgio, “Mitochondria and vascular pathology,” Pharmacological Reports, vol. 61, no. 1, pp. 123–130, 2009. View at Scopus
  35. B. Chance, H. Sies, and A. Boveris, “Hydroperoxide metabolism in mammalian organs,” Physiological Reviews, vol. 59, no. 3, pp. 527–605, 1979. View at Scopus
  36. Y. Li, T. T. Huang, E. J. Carlson et al., “Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase,” Nature Genetics, vol. 11, no. 4, pp. 376–381, 1995. View at Scopus
  37. J. R. Henderson, H. Swalwell, S. Boulton, P. Manning, C. J. McNeil, and M. A. Birch-Machin, “Direct, real-time monitoring of superoxide generation in isolated mitochondria,” Free Radical Research, vol. 43, no. 9, pp. 796–802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Wajima, S. Shimizu, T. Hiroi, M. Ishii, and Y. Kiuchi, “Reduction of myocardial infarct size by tetrahydrobiopterin: possible involvement of mitochondrial KATP channels activation through nitric oxide production,” Journal of Cardiovascular Pharmacology, vol. 47, no. 2, pp. 243–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Chang, S. J. Kou, W. T. Lin, and C. S. Liu, “Regulatory role of mitochondria in oxidative stress and atherosclerosis,” World Journal of Cardiology, vol. 2, no. 6, pp. 150–159, 2010.
  40. R. S. Frey, M. Ushio-Fukai, and A. B. Malik, “NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology,” Antioxidants and Redox Signaling, vol. 11, no. 4, pp. 791–810, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Schramm, P. Matusik, G. Osmenda, and T. J. Guzik, “Targeting NADPH oxidases in vascular pharmacology,” Vascular Pharmacology, vol. 56, no. 5-6, pp. 216–231, 2012. View at Publisher · View at Google Scholar
  42. J. Feng, S. M. Damrauer, M. Lee, F. W. Sellke, C. Ferran, and M. R. Abid, “Endothelium-dependent coronary vasodilatation requires NADPH oxidase-derived reactive oxygen species,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 9, pp. 1703–1710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Wind, K. Beuerlein, T. Eucker, et al., “Comparative pharmacology of chemically distinct NADPH oxidase inhibitors,” British Journal of Pharmacology, vol. 161, no. 4, pp. 885–898, 2010. View at Publisher · View at Google Scholar
  44. E. M. De Gussem, R. J. Snijder, F. J. Disch, P. Zanen, C. J. J. Westermann, and J. J. Mager, “The effect of N-acetylcysteine on epistaxis and quality of life in patients with HHT: a pilot study,” Rhinology, vol. 47, no. 1, pp. 85–88, 2009. View at Scopus
  45. K. Sugamura and J. F. Keaney Jr., “Reactive oxygen species in cardiovascular disease,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 978–992, 2011. View at Publisher · View at Google Scholar