About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 789870, 5 pages
http://dx.doi.org/10.1155/2012/789870
Clinical Study

Oxidative Stress Markers in Prostate Cancer Patients after HDR Brachytherapy Combined with External Beam Radiation

1Department of Medical Biology, Faculty of Medicine, Nicolaus Copernicus University, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland
2Department of Normal Anatomy, Faculty of Medicine, Nicolaus Copernicus University, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland
3Department of Neurosurgery, Stanisław Staszic Specjalist Hospital, Rydygiera 1 Street, 64-920 Piła, Poland
4Department of Oncology and Brachytherapy, Faculty of Medicine, Nicolaus Copernicus University, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland
5Franciszek Łukaszczyk Oncology Center, Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland

Received 4 September 2012; Accepted 29 November 2012

Academic Editor: Ryuichi Morishita

Copyright © 2012 Alina Woźniak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Murphy and R. W. Watson, “Patented prostate cancer biomarkers,” Nature Reviews Urology, vol. 9, no. 8, pp. 464–472, 2012. View at Publisher · View at Google Scholar
  2. M. I. Koukourakis and S. Touloupidis, “External beam radiotherapy for prostate cancer: current position and trends,” Anticancer Research, vol. 26, no. 1, pp. 485–494, 2006. View at Scopus
  3. C. Alberti, “Organ-confined prostate carcinoma radiation brachytherapy compared with external either photon- or hadron-beam radiation therapy. Just a short up-to-date,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 7, pp. 769–774, 2011. View at Scopus
  4. J. E. Damber and G. Aus, “Prostate cancer,” The Lancet, vol. 371, no. 9625, pp. 1710–1721, 2008.
  5. K. Jomova and M. Valko, “Advances in metal-induced oxidative stress and human disease,” Toxicology, vol. 283, no. 2-3, pp. 65–87, 2011. View at Publisher · View at Google Scholar
  6. H. E. Seifried, D. E. Anderson, E. I. Fisher, and J. A. Milner, “A review of the interaction among dietary antioxidants and reactive oxygen species,” Journal of Nutritional Biochemistry, vol. 18, no. 9, pp. 567–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. K. Griendling, D. Sorescu, B. Lassègue, and M. Ushio-Fukai, “Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 10, pp. 2175–2183, 2000. View at Scopus
  8. M. M. Elahi, Y. X. Kong, and B. M. Matata, “Oxidative stress as a mediator of cardiovascular disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 259–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Scopus
  10. R. F. Beers and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” The Journal of Biological Chemistry, vol. 195, no. 1, pp. 133–140, 1952. View at Scopus
  11. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Scopus
  12. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” in Methods in Enzymology, S. Fleisher and I. Packer, Eds., pp. 302–310, Academic Press, New York, NY, USA, 1978.
  13. H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” in Methods in Enzymology, L. Packer and A. N. Glazer, Eds., pp. 407–421, Academic Press, New York, NY, USA, 1990.
  14. V. Battisti, L. D. K. Maders, M. D. Bagatini et al., “Oxidative stress and antioxidant status in prostate cancer patients: relation to Gleason score, treatment and bone metastasis,” Biomedicine and Pharmacotherapy, vol. 65, no. 7, pp. 516–524, 2011. View at Publisher · View at Google Scholar
  15. B. Sandhya, S. Manoharan, G. Sirisha-Lavanya, and Ch. Ratna-Manmohan, “Lipid peroxidation and antioxidant status in prostate cancer patients,” Indian Journal of Science and Technology, vol. 3, no. 1, pp. 83–86, 2010.
  16. O. Akinloye, O. Adaramoye, and O. Kareem, “Changes in antioxidant status and lipid peroxidation in Nigerian patients with prostate carcinoma,” Polskie Archiwum Medycyny Wewnetrznej, vol. 119, no. 9, pp. 526–532, 2009. View at Scopus
  17. A. Aydin, Z. Arsova-Sarafinovska, A. Sayal et al., “Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia,” Clinical Biochemistry, vol. 39, no. 2, pp. 176–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Zelefsky, “Three-dimensional conformal radiation therapy in the management of localized prostate cancer,” in New Perspectives in Prostate Cancer, A. Belldegrun, R. S. Kirby, and R. T. D. Oliver, Eds., pp. 215–226, Isis Medical Media, Oxford, UK, 1998.
  19. G. K. Hunter, C. A. Reddy, and E. A. Klein, “Long-term (10-year) gastrointestinal and genitourinary toxicity after treatment with external beam radiotherapy, radical prostatectomy, or brachytherapy for prostate cancer,” Prostate Cancer, vol. 2012, Article ID 853487, 7 pages, 2012. View at Publisher · View at Google Scholar