About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 831748, 8 pages
http://dx.doi.org/10.1155/2012/831748
Research Article

Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

1Department of Urology, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
2Research Center, Prince Sultan Medical Military City, P.O. Box 7897 (S-775), Riyadh 11159, Saudi Arabia

Received 20 June 2012; Accepted 3 September 2012

Academic Editor: Sumitra Miriyala

Copyright © 2012 Ketab E. Al-Otaibi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Sterling, T. Tehrani, and M. R. Rudnick, “Clinical significance and preventive strategies for contrast-induced nephropathy,” Current Opinion in Nephrology and Hypertension, vol. 17, no. 6, pp. 616–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Pannu, N. Wiebe, M. Tonelli, and Alberta Kidney Disease Network, “Prophylaxis strategies for contrast-induced nephropathy,” The Journal of the American Medical Association, vol. 295, no. 23, pp. 2765–2779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. S. Weisberg, P. B. Kurnik, and B. R. C. Kurnik, “Radiocontrast-induced nephropathy in humans: role of renal vasoconstriction,” Kidney International, vol. 41, no. 5, pp. 1408–1415, 1992. View at Scopus
  4. I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Investigative Radiology, vol. 37, no. 8, pp. 428–434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Jost, H. Pietsch, J. Sommer et al., “Retention of iodine and expression of biomarkers for renal damage in the kidney after application of iodinated contrast media in rats,” Investigative Radiology, vol. 44, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Moore, E. P. Steinberg, N. R. Powe et al., “Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial,” Radiology, vol. 182, no. 3, pp. 649–655, 1992. View at Scopus
  7. S. Acikel, H. Muderrisoglu, A. Yildirir et al., “Prevention of contrast-induced impairment of renal function by short-term or long-term statin therapy in patients undergoing elective coronary angiography,” Blood Coagulation and Fibrinolysis, vol. 21, no. 8, pp. 750–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Yoshida, H. Kamihata, S. Nakamura et al., “Prevention of contrast-induced nephropathy by chronic pravastatin treatment in patients with cardiovascular disease and renal insufficiency,” Journal of Cardiology, vol. 54, no. 2, pp. 192–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Zhang, L. Zhang, Y. Lu et al., “Efficacy of statin pretreatment for the prevention of contrast-induced nephropathy: a meta-analysis of randomised controlled trials,” International Journal of Clinical Practice, vol. 65, no. 5, pp. 624–630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Munoz, P. R. Maxwell, K. Green, D. W. Hughes, and R. L. Talbert, “Pravastatin versus simvastatin for prevention of contrast-induced nephropathy,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 16, no. 3-4, pp. 376–379, 2011. View at Publisher · View at Google Scholar
  11. S. B. Duan, F. Y. Liu, J. A. Luo et al., “Nephrotoxicity of high- and low-osmolar contrast media: the protective role of amlodipine in a rat model,” Acta Radiologica, vol. 41, no. 5, pp. 503–507, 2000. View at Scopus
  12. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Scopus
  13. M. J. Mangino, M. K. Murphy, G. G. Grabau, and C. B. Anderson, “Protective effects of glycine during hypothermic renal ischemia-reperfusion injury,” American Journal of Physiology, vol. 261, no. 5, part 2, pp. F841–F848, 1991. View at Scopus
  14. F. C. Barone, L. M. Hillegass, W. J. Price et al., “Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification,” Journal of Neuroscience Research, vol. 29, no. 3, pp. 336–345, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Moshage, B. Kok, J. R. Huizenga, and P. L. M. Jansen, “Nitrite and nitrate determinations in plasma: a critical evaluation,” Clinical Chemistry, vol. 41, no. 6, part 1, pp. 892–896, 1995. View at Scopus
  16. L. Raij, S. Azar, and W. Keane, “Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats,” Kidney International, vol. 26, no. 2, pp. 137–143, 1984. View at Scopus
  17. Y. Zhao, Z. Tao, Z. Xu et al., “Toxic effects of a high dose of non-ionic iodinated contrast media on renal glomerular and aortic endothelial cells in aged rats in vivo,” Toxicology Letters, vol. 202, no. 3, pp. 253–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Toprak, M. Cirit, M. Tanrisev et al., “Preventive effect of nebivolol on contrast-induced nephropathy in rats,” Nephrology Dialysis Transplantation, vol. 23, no. 3, pp. 853–859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Berns, “Nephrotoxicity of contrast media,” Kidney International, vol. 36, no. 4, pp. 730–740, 1989. View at Scopus
  20. S. R. Inman, T. W. Caprio, E. Drummond, M. Mueller, and K. Entenman, “Enhanced acetylcholine-induced dilation in afferent arterioles in simvastatin-fed rats,” Vascular Pharmacology, vol. 44, no. 1, pp. 17–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Agmon, H. Peleg, Z. Greenfeld, S. Rosen, and M. Brezis, “Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat,” Journal of Clinical Investigation, vol. 94, no. 3, pp. 1069–1075, 1994. View at Scopus
  22. N. Klause, T. Arendt, M. Lins, and G. Gronow, “Hypoxic renal tissue damage by endothelin-mediated arterial vasoconstriction during radioangiography in man,” Advances in Experimental Medicine and Biology, vol. 454, pp. 225–234, 1998. View at Scopus
  23. R. Beeri, Z. Symon, M. Brezis et al., “Rapid DNA fragmentation from hypoxia along the thick ascending limb of rat kidneys,” Kidney International, vol. 47, no. 6, pp. 1806–1810, 1995. View at Scopus
  24. A. M. Sheridan and J. V. Bonventre, “Pathophysiology of ischemic acute renal failure,” Contributions to Nephrology, vol. 132, pp. 7–21, 2001. View at Scopus
  25. A. Yesilyurt, I. Aydin Erden, I. Bilgiç, G. Erden, and A. Albayrak, “The protective effect of erdosteine on radiocontrast induced nephrotoxicity in rats,” Environmental Toxicology, vol. 26, no. 4, pp. 395–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Parvez, M. A. Rahman, and R. Moncada, “Contrast media-induced lipid peroxidation in the rat kidney,” Investigative Radiology, vol. 24, no. 9, pp. 697–702, 1989. View at Scopus
  27. H. C. Lee, H. W. Yen, and S. H. Sheu, “Effects of different contrast media on glutathione peroxidase and superoxide dismutase activities in the heart and kidneys of normal and streptozotocin-induced diabetic rats,” Journal of the Formosan Medical Association, vol. 105, no. 7, pp. 530–535, 2006. View at Scopus
  28. C. F. Pinto, M. Watanabe, and M. D. F. F. Vattimo, “Hydration and N-acetylcysteine in acute renal failure caused by iodinated contrast medium: an experiment with rats,” Journal of Nephrology, vol. 21, no. 5, pp. 783–788, 2008. View at Scopus
  29. A. Imaeda, T. Tanigawa, T. Aoki, Y. Kondo, N. Nakamura, and T. Yoshikawa, “Antioxidative effects of fluvastatin and its metabolites against oxidative DNA damage in mammalian cultured cells,” Free Radical Research, vol. 35, no. 6, pp. 789–801, 2001. View at Scopus
  30. M. Kassan, M. J. Montero, and M. A. Sevilla, “In vitro antioxidant activity of pravastatin provides vascular protection,” European Journal of Pharmacology, vol. 630, no. 1-3, pp. 107–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. An, H. Xin, W. Yan, and X. Zhou, “Amelioration of cisplatin-induced nephrotoxicity by pravastatin in mice,” Experimental and Toxicologic Pathology, vol. 63, no. 3, pp. 215–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Fujieda, T. Morita, K. Naruse et al., “Effect of pravastatin on cisplatin-induced nephrotoxicity in rats,” Human and Experimental Toxicology, vol. 30, no. 7, pp. 603–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Sela, R. Shurtz-Swirski, M. Cohen-Mazor et al., “Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease,” Journal of the American Society of Nephrology, vol. 16, no. 8, pp. 2431–2438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. R. Rodrigues, D. Rodriguez, M. Russo, and A. Campa, “Macrophage activation includes high intracellular myeloperoxidase activity,” Biochemical and Biophysical Research Communications, vol. 292, no. 4, pp. 869–873, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. H. W. Yao, L. G. Mao, and J. P. Zhu, “Protective effects of pravastatin in murine lipopolysaccharide-induced acute lung injury,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 9, pp. 793–797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Krane and C. Wanner, “Statins, inflammation and kidney disease,” Nature Reviews Nephrology, vol. 7, no. 7, pp. 385–397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sendeski, A. Patzak, T. L. Pallone, C. Cao, A. E. Persson, and P. B. Persson, “Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy,” Radiology, vol. 251, no. 3, pp. 697–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. W. Yang, R. H. Jia, D. P. Yang, G. H. Ding, and C. X. Huang, “Dietary hypercholesterolemia aggravates contrast media-induced nephropathy,” Chinese Medical Journal, vol. 117, no. 4, pp. 542–546, 2004. View at Scopus
  39. L. Andrade, S. B. Campos, and A. C. Seguro, “Hypercholesterolemia aggravates radiocontrast nephrotoxicity: protective role of L-arginine,” Kidney International, vol. 53, no. 6, pp. 1736–1742, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Wolfrum, K. S. Jensen, and J. K. Liao, “Endothelium-dependent effects of statins,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 729–736, 2003. View at Publisher · View at Google Scholar
  41. U. Laufs, V. La Fata, J. Plutzky, and J. K. Liao, “Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors,” Circulation, vol. 97, no. 12, pp. 1129–1135, 1998. View at Scopus
  42. N. Ghaffari, C. Ball, J. A. Kennedy, I. Stafford, and J. F. Beltrame, “Acute modulation of vasoconstrictor responses by Pravastatin in small vessels,” Circulation Journal, vol. 75, no. 6, pp. 1506–1514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Bao, S. Minatoguchi, H. Kobayashi et al., “Pravastatin reduces myocardial infarct size via increasing protein kinase C-dependent nitric oxide, decreasing oxyradicals and opening the mitochondrial adenosine triphosphate-sensitive potassium channels in rabbits,” Circulation Journal, vol. 71, no. 10, pp. 1622–1628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. R. Inman, N. A. Davis, K. M. Olson, and V. A. Lukaszek, “Simvastatin attenuates renal ischemia/reperfusion injury in rats administered cyclosporine A,” American Journal of the Medical Sciences, vol. 326, no. 3, pp. 117–121, 2003. View at Publisher · View at Google Scholar · View at Scopus