About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 920932, 15 pages
http://dx.doi.org/10.1155/2012/920932
Research Article

Biomarkers of Antioxidant Status, Inflammation, and Cartilage Metabolism Are Affected by Acute Intense Exercise but Not Superoxide Dismutase Supplementation in Horses

Department of Animal Sciences, Rutgers the State University, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA

Received 17 March 2012; Accepted 6 May 2012

Academic Editor: Manfred Lamprecht

Copyright © 2012 Emily D. Lamprecht and Carey A. Williams. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. E. Auer, J. C. Ng, J. Hrdlicka, and A. A. Seawright, “The elimination of injected superoxide dismutase from synovial fluid of the horse,” Australian Veterinary Journal, vol. 66, no. 4, pp. 117–119, 1989. View at Scopus
  2. A. L. Bertone, J. L. Palmer, and J. Jones, “Synovial fluid cytokines and eicosanoids as markers of joint disease in horses,” Veterinary Surgery, vol. 30, no. 6, pp. 528–538, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. H. Petersen, J. P. Nielsen, and P. M. H. Heegaard, “Application of acute phase protein measurements in veterinary clinical chemistry,” Veterinary Research, vol. 35, no. 2, pp. 163–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. E. C. Firth, “The response of bone, articular cartilage and tendon to exercise in the horse,” Journal of Anatomy, vol. 208, no. 4, pp. 513–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Streltsova, K. H. McKeever, N. R. Liburt, et al., “Effect of orange peel and black tea extracts on markers of performance and cytokine markers of inflammation,” Equine and Comparative Exercise Physiology, vol. 2006, pp. 121–130, 2006. View at Publisher · View at Google Scholar
  6. E. D. Lamprecht, C. A. Bagnell, and C. A. Williams, “Inflammatory responses to three modes of intense exercise in Standardbred mares-A pilot study,” Comparative Exercise Physiology, vol. 5, pp. 115–125, 2009. View at Publisher · View at Google Scholar
  7. J. D. Lang, P. J. McArdle, P. J. O'Reilly, and S. Matalon, “Oxidant-antioxidant balance in acute lung injury,” Chest, vol. 122, no. 6, pp. 314S–320S, 2002. View at Scopus
  8. N. Ishida, S. Hobo, T. Takahashi et al., “Chronological changes in superoxide-scavenging ability and lipid peroxide concentration of equine serum due to stress from exercise and transport,” Equine Veterinary Journal. Supplement, vol. 30, pp. 430–433, 1999. View at Scopus
  9. A. White, M. Estrada, K. Walker et al., “Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses,” Comparative Biochemistry and Physiology, vol. 128, no. 1, pp. 99–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Marlin, K. Fenn, N. Smith et al., “Changes in circulatory antioxidant status in horses during prolonged exercise,” Journal of Nutrition, vol. 132, no. 6, pp. 1622S–1627S, 2002. View at Scopus
  11. C. A. Williams, D. S. Kronfeld, T. M. Hess, K. E. Saker, and P. A. Harris, “Lipoic acid and vitamin E supplementation to horses diminishes endurance exercise induced oxidative stress, muscle enzyme leakage, and apoptosis. Page 105 in The Elite Race and Endurance Horse,” in Proceedings of the Equine Sports Medicine and Science, A. Lindner, Ed., Oslo, Norway, 2004.
  12. S. Kinnunen, S. Hyyppä, A. Lehmuskero et al., “Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters,” European Journal of Applied Physiology, vol. 95, no. 5-6, pp. 550–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. N. Shek, B. H. Sabiston, A. Buguet, and M. W. Radomski, “Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response,” International Journal of Sports Medicine, vol. 16, no. 7, pp. 466–474, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. I. K. M. Brenner, V. M. Natale, P. Vasiliou, A. I. Moldoveanu, P. N. Shek, and R. J. Shephard, “Impact of three different types of exercise on components of the inflammatory response,” European Journal of Applied Physiology and Occupational Physiology, vol. 80, no. 5, pp. 452–460, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. P. D. Rossdale, R. Hopes, N. J. Digby, and K. offord, “Epidemiological study of wastage among racehorses 1982 and 1983,” Veterinary Record, vol. 116, no. 3, pp. 66–69, 1985. View at Scopus
  16. J. A. Kidd, C. Fuller, and A. R. S. Barr, “Osteoarthritis in the horse,” Equine Veterinary Education, vol. 13, no. 3, pp. 160–168, 2001. View at Scopus
  17. USDA, Lameness and Laminitis in U.S. Horses. USDA:APHIS:VS, CEAH, National Animal Health Monitoring System. #N348.1001 USDA, Fort Collins, Colo, USA, 2001.
  18. P. K. Dyson, B. F. Jackson, D. U. Pfeiffer, and J. S. Price, “Days lost from training by two- and three-year-old Thoroughbred horses: a survey of seven UK training yards,” Equine Veterinary Journal, vol. 40, no. 7, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. von Rechenberg, C. W. McIlwraith, M. K. Akens, D. D. Frisbie, C. Leutenegger, and J. A. Auer, “Spontaneous production of nitric oxide (NO), prostaglandin (PGE2) and neutral metalloproteinases (NMPs) in media of explant cultures of equine synovial membrane and articular cartilage from normal and osteoarthritic joints,” Equine Veterinary Journal, vol. 32, no. 2, pp. 140–150, 2000. View at Scopus
  20. E. V. Tchetina, J. A. Di Battista, D. J. Zukor, J. Antoniou, and A. R. Poole, “Prostaglandin PGE2 at very low concentrations suppresses collagen cleavage in cultured human osteoarthritic articular cartilage: this involves a decrease in expression of proinflammatory genes, collagenases and COL10A1, a gene linked to chondrocyte hypertrophy,” Arthritis Research and Therapy, vol. 9, no. 4, article R75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. W. McIlwraith, “Use of synovial fluid and serum biomarkers in equine bone and joint disease: a review,” Equine Veterinary Journal, vol. 37, no. 5, pp. 473–482, 2005. View at Scopus
  22. D. D. Frisbie, F. Al-Sobayil, R. C. Billinghurst, C. E. Kawcak, and C. W. McIlwraith, “Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses,” Osteoarthritis and Cartilage, vol. 16, no. 10, pp. 1196–1204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. R. Poole, M. Ionescu, A. Swan, and P. A. Dieppe, “Changes in cartilage metabolism in arthritis are reflected by altered serum and synovial fluid levels of the cartilage proteoglycan aggrecan. Implications for pathogenesis,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 25–33, 1994. View at Scopus
  24. D. D. Frisbie, C. S. Ray, M. Ionescu, A. R. Poole, P. L. Chapman, and C. W. McIlwraith, “Measurement of synovial fluid and serum concentrations of the 846 epitope of chondroitin sulfate and of carboxy propeptides of type II procollagen for diagnosis of osteochondral fragmentation in horses,” American Journal of Veterinary Research, vol. 60, no. 3, pp. 306–309, 1999. View at Scopus
  25. L. A. Fortier, “Systemic therapies for joint disease in horses,” Veterinary Clinics of North America, vol. 21, no. 3, pp. 547–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. K. Nelson, S. K. Bose, G. K. Grunwald, P. Myhill, and J. M. McCord, “The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy,” Free Radical Biology and Medicine, vol. 40, no. 2, pp. 341–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Cuzzocrea, E. Mazzon, L. Dugo, A. P. Caputi, D. P. Riley, and D. Salvemini, “Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis,” European Journal of Pharmacology, vol. 432, no. 1, pp. 79–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Masini, S. Cuzzocrea, E. Mazzon, C. Marzocca, P. F. Mannaioni, and D. Salvemini, “Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo,” British Journal of Pharmacology, vol. 136, no. 6, pp. 905–917, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Vouldoukis, M. Conti, P. Krauss et al., “Supplementation with gliadin-combined plant superoxide dismutase extract promotes antioxidant defences and protects against oxidative stress,” Phytotherapy Research, vol. 18, no. 12, pp. 957–962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Arent, P. Davitt, D. L. Golem, C. A. Williams, K. H. McKeever, and C. Jaouhari, “The effects of a post-workout nutraceutical drink on body composition, performance and hormonal and biochemical responses in Division I college football players,” Comparative Exercise Physiology, vol. 6, pp. 73–80, 2009.
  31. S. M. Arent, J. K. Pellegrino, C. A. Williams, D. A. Difabio, and J. C. Greenwood, “Nutritional supplementation, performance, and oxidative stress in college soccer players,” Journal of Strength and Conditioning Research, vol. 24, no. 4, pp. 1117–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Petelin, Z. Pavlica, T. Ivanuša, M. Šentjurc, and U. Skalerič, “Local delivery of liposome-encapsulated superoxide dismutase and catalase suppress periodontal inflammation in beagles,” Journal of Clinical Periodontology, vol. 27, no. 12, pp. 918–925, 2000. View at Scopus
  33. W. Huber, “Orgotein-(bovine Cu-Zn superoxide dismutase), an anti-inflammatory protein drug: discovery, toxicology and pharmacology,” European Journal of Rheumatology and Inflammation, vol. 4, no. 2, pp. 173–182, 1981. View at Scopus
  34. D. E. Auer, J. C. Ng, and A. A. Seawright, “Effect of palosein (superoxide dismutase) and catalase upon oxygen derived free radical induced degradation of equine synovial fluid,” Equine Veterinary Journal, vol. 22, no. 1, pp. 13–17, 1990. View at Scopus
  35. American Association of Equine Practitioners, Guide for Veterinary Service and Judging of Equestrian Events, 4th edition, 1991.
  36. D. R. Henneke, G. D. Potter, J. L. Kreider, and B. F. Yeates, “Relationship between condition score, physical measurements and body fat percentage in mares,” Equine Veterinary Journal, vol. 15, no. 4, pp. 371–372, 1983. View at Scopus
  37. R. G. Westervelt, J. R. Stouffer, H. F. Hintz, and H. F. Schryver, “Estimating fatness in horses and ponies,” Journal of Animal Science, vol. 43, pp. 781–785, 1976.
  38. R. Y. Au, T. K. Al-Talib, A. Y. Au, P. V. Phan, and C. G. Frondoza, “Avocado soybean unsaponifiables (ASU) suppress TNF-α, IL-1β, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages,” Osteoarthritis and Cartilage, vol. 15, no. 11, pp. 1249–1255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Beauchamp and I. Fridovich, “Superoxide dismutase: improved assays and an assay applicable to acrylamide gels,” Analytical Biochemistry, vol. 44, no. 1, pp. 276–287, 1971. View at Scopus
  40. P. M. Graham-Thiers, D. S. Kronfeld, K. A. Kline, D. J. Sklan, and P. A. Harris, “Dietary protein and fat effects on protein status in arabian horses during interval training and repeated sprints,” Journal of Equine Veterinary Science, vol. 23, no. 12, pp. 554–559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. A. Wilson, D. S. Kronfeld, L. S. Gay, J. H. Williams, T. M. Wilson, and M. I. Lindinger, “Sarcoplasmic reticulum responses to repeated sprints are affected by conditioning of horses,” Journal of Animal Science, vol. 76, no. 12, pp. 3065–3071, 1998. View at Scopus
  42. K. Hasegawa, S. Wakino, S. Tatematsu et al., “Role of asymmetric dimethylarginine in vascular injury in transgenic mice overexpressing dimethylarginie dimethylaminohydrolase 2,” Circulation Research, vol. 101, no. 2, pp. e2–e10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. R. J. Cybulski, P. Sanz, F. Alem, S. Stibitz, R. L. Bull, and A. D. O'Brien, “Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress,” Infection and Immunity, vol. 77, no. 1, pp. 274–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Qin, M. Karabiyikoglu, Y. Hua et al., “Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia,” Stroke, vol. 38, no. 4, pp. 1362–1367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. F. M. Maiorino, R. Brigelius-Flohé, K. D. Aumann, A. Roveri, D. Schomburg, and L. Flohé, “Diversity of glutathione peroxidases,” Methods in Enzymology, vol. 252, pp. 38–53, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. J. P. Richie, L. Skowronski, P. Abraham, and Y. Leutzinger, “Blood glutathione concentrations in a large-scale human study,” Clinical Chemistry, vol. 42, no. 1, pp. 64–70, 1996. View at Scopus
  47. M. M. Vick, A. A. Adams, B. A. Murphy et al., “Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse,” Journal of Animal Science, vol. 85, no. 5, pp. 1144–1155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. D. M. Ainsworth, J. A. Appleton, S. W. Eicker, R. Luce, M. J. Flaminio, and D. F. Antczak, “The effect of strenuous exercise on mRNA concentrations of interleukin-12, interferon-gamma and interleukin-4 in equine pulmonary and peripheral blood mononuclear cells,” Veterinary Immunology and Immunopathology, vol. 91, no. 1, pp. 61–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Ramakers, J. M. Ruijter, R. H. Lekanne Deprez, and A. F. M. Moorman, “Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data,” Neuroscience Letters, vol. 339, no. 1, pp. 62–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. R. van den Boom, C. H. A. van de Lest, S. Bull, P. A. J. Brama, P. R. van Weeren, and A. Barneveld, “Influence of repeated arthrocentesis and exercise on synovial fluid concentrations of nitric oxide, prostaglandin E2 and glycosaminoglycans in healthy equine joints,” Equine Veterinary Journal, vol. 37, no. 3, pp. 250–256, 2005. View at Scopus
  52. P. A. J. Brama, R. van den Boom, J. DeGroot, G. H. Kiers, and P. R. van Weeren, “Collagenase-1 (MMP-1) activity in equine synovial fluid: influence of age, joint pathology, exercise and repeated arthrocentesis,” Equine Veterinary Journal, vol. 36, no. 1, pp. 34–40, 2004. View at Scopus
  53. R. van den Boom, P. A. J. Brama, G. H. Kiers, J. DeGroot, A. Barneveld, and P. R. Van Weeren, “The influence of repeated arthrocentesis and exercise on matrix metalloproteinase and tumour necrosis factor α activities in normal equine joints,” Equine Veterinary Journal, vol. 36, no. 2, pp. 155–159, 2004. View at Scopus
  54. F. C. Robion, B. Doizé, L. Bouré et al., “Use of synovial fluid markers of cartilage synthesis and turnover to study effects of repeated intra-articular administration of methylprednisolone acetate on articular cartilage in vivo,” Journal of Orthopaedic Research, vol. 19, no. 2, pp. 250–258, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Szucsik, V. Baliskonis, and K. H. McKeever, “Effect of seven common supplements on plasma electrolyte and total carbon dioxide concentration and strong ion difference in Standardbred horses subjected to a simulated race test,” Equine and Comparative Exercise Physiology, vol. 3, pp. 37–44, 2006. View at Publisher · View at Google Scholar
  56. C. A. Williams, M. E. Gordon, C. L. Betros, and K. H. McKeever, “Apoptosis and antioxidant status are influenced by age and exercise training in horses,” Journal of Animal Science, vol. 86, no. 3, pp. 576–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Padalino, G. Rubino, P. Centoducati, and F. Petazzi, “Training versus overtraining: evaluation of two protocols,” Journal of Equine Veterinary Science, vol. 27, no. 1, pp. 28–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. P. A. Harris, “Musculoskeletal disease,” in Equine Internal Medicine, S. M. Reed and W. M. Bayly, Eds., pp. 375–397, WB Saunders, 1998.
  59. A. Frankiewicz-Jóźko and E. Szarska, “Anti-oxidant level to exercise in the blood of endurance horses,” Biology of Sport, vol. 17, no. 3, pp. 217–227, 2000. View at Scopus
  60. C. A. Williams, D. S. Kronfeld, T. M. Hess et al., “Comparison of oxidative stress and antioxidant status in endurance horses in three 80-km races,” Equine and Comparative Exercise Physiology, vol. 2, pp. 153–157, 2004. View at Scopus
  61. J. M. McBride and W. J. Kraemer, “Effect of vitamin E status on lipid peroxidation in exercised horses,” The Journal of Strength & Conditioning Research, vol. 13, pp. 175–183, 1999.
  62. A. I. Moldoveanu, R. J. Shephard, and P. N. Shek, “The cytokine response to physical activity and training,” Sports Medicine, vol. 31, no. 2, pp. 115–144, 2001. View at Scopus
  63. J. J. Haddad and C. S. Fahlman, “Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine?” Biochemical and Biophysical Research Communications, vol. 297, no. 2, pp. 163–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Oberholzer, C. Oberholzer, and L. L. Moldawer, “Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug,” Critical Care Medicine, vol. 30, no. 1, pp. S58–S63, 2002. View at Scopus
  65. R. Pezzilli, P. Billi, R. Miniero, and B. Barakat, “Serum interleukin-10 in human acute pancreatitis,” Digestive Diseases and Sciences, vol. 42, no. 7, pp. 1469–1472, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. C. A. Gunnett, D. D. Heistad, D. J. Berg, and F. M. Faraci, “IL-10 deficiency increases superoxide and endothelial dysfunction during inflammation,” American Journal of Physiology, vol. 279, no. 4, pp. H1555–H1562, 2000. View at Scopus
  67. M. A. Gougerot-Podicalo, C. Elbim, and S. Chollet-Martin, “Modulation by pro- and anti-inflammatory cytokines of the oxidative burst of human neutrophils,” Pathologie Biologie, vol. 44, no. 1, pp. 36–41, 1996. View at Scopus
  68. S. S. Chen, J. Gong, L. F-T, and U. Mohammed, “Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation,” Immunology, vol. 100, no. 4, pp. 471–480, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Hong, S. Hong, Y. H. Chang, and S. H. Cho, “Influence of an orally effective superoxide dismutase (Glisodin) on strenuous exercise-induced changes of blood antioxidant enzymes and plasma lactate,” in Proceedings of the American Association for Clinical Chemistry. National Meeting-Poster, Los Angeles, Calif, USA, 2004.
  70. R. J. Bloomer, “Effect of exercise on oxidative stress biomarkers,” Advances in Clinical Chemistry, vol. 46, pp. 1–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Andersson, A. Karlsen, R. Blomhoff, T. Raastad, and F. Kadi, “Plasma antioxidant responses and oxidative stress following a soccer game in elite female players,” Scandinavian Journal of Medicine and Science in Sports, vol. 20, no. 4, pp. 600–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. P. C. Mills, “Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse,” European Journal of Applied Physiology and Occupational Physiology, vol. 74, no. 1-2, pp. 60–66, 1996. View at Scopus
  73. E. Chiaradia, L. Avellini, F. Rueca et al., “Physical exercise, oxidative stress and muscle damage in racehorses,” Comparative Biochemistry and Physiology B, vol. 119, no. 4, pp. 833–836, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. C. A. Williams and S. A. Carlucci, “Oral vitamin E supplementation on oxidative stress, vitamin and antioxidant status in intensely exercised horses,” Equine Veterinary Journal. Supplement, no. 36, pp. 617–621, 2006. View at Scopus
  75. D. C. Donovan, C. A. Jackson, P. T. Colahan et al., “Assessment of exercise-induced alterations in neutrophil function in horses,” American Journal of Veterinary Research, vol. 68, no. 11, pp. 1198–1204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. Li Li Ji and R. Fu, “Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide,” Journal of Applied Physiology, vol. 72, no. 2, pp. 549–554, 1992. View at Scopus
  77. K. Sahlin, K. Ekberg, and S. Cizinsky, “Changes in plasma hypoxanthine and free radical markers during exercise in man,” Acta Physiologica Scandinavica, vol. 142, no. 2, pp. 275–281, 1991. View at Scopus
  78. K. Ono, K. Inui, T. Hasegawa et al., “The changes of antioxidative enzyme activities in equine erythrocytes following exercise,” The Japanese Journal of Veterinary Science, vol. 52, no. 4, pp. 759–765, 1990. View at Scopus
  79. B. J. Hargreaves, D. S. Kronfeld, J. N. Waldron et al., “Antioxidant status of horses during two 80-km endurance races,” Journal of Nutrition, vol. 132, no. 6, pp. 1781S–1783S, 2002. View at Scopus
  80. A. M. Niess, H. H. Dickhuth, H. Northoff, and E. Fehrenbach, “Free radicals and oxidative stress in exercise-immunological aspects,” Exercise Immunology Review, no. 5, pp. 22–56, 1999. View at Scopus
  81. D. C. Donovan, C. A. Jackson, P. T. Colahan, N. Norton, and D. J. Hurley, “Exercise-induced alterations in pro-inflammatory cytokines and prostaglandin F2α in horses,” Veterinary Immunology and Immunopathology, vol. 118, no. 3-4, pp. 263–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Sureda, P. Tauler, A. Aguiló et al., “Blood cell NO synthesis in response to exercise,” Nitric Oxide, vol. 15, no. 1, pp. 5–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. R. L. Smith, M. C. D. Trindade, T. Ikenoue et al., “Effects of shear stress on articular chondrocyte metabolism,” Biorheology, vol. 37, no. 1-2, pp. 95–107, 2000. View at Scopus
  84. R. L. Smith, B. S. Donlon, M. K. Gupta et al., “Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro,” Journal of Orthopaedic Research, vol. 13, no. 6, pp. 824–831, 1995. View at Publisher · View at Google Scholar · View at Scopus
  85. A. N. Dimock, P. D. Siciliano, and C. W. Mcilwraith, “Evidence supporting an increased presence of reactive oxygen species in the diseased equine joint,” Equine Veterinary Journal, vol. 32, no. 5, pp. 439–443, 2000. View at Scopus
  86. R. A. Greenwald and W. W. Moy, “Inhibition of collagen gelation by action of the superoxide radical,” Arthritis and Rheumatism, vol. 22, no. 3, pp. 251–259, 1979. View at Scopus
  87. S. May, R. Hooke, and K. Peremans, “Prostaglandin E2 in equine joint disease,” Vlaams Diergeneeskundig Tijdschrift, vol. 63, no. 6, pp. 187–191, 1994.
  88. P. S. Chan, J. P. Caron, G. J. M. Rosa, and M. W. Orth, “Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants,” Osteoarthritis and Cartilage, vol. 13, no. 5, pp. 387–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. C. C. Teitz and O. D. Chrisman, “The effect of salicylate and chloroquine on prostaglandin induced articular damage in the rabbit knee,” Clinical Orthopaedics, vol. 108, pp. 264–274, 1975. View at Scopus
  90. L. Lippiello, K. Yamamoto, D. Robinson, and H. J. Mankin, “Involvement of prostaglandins from rheumatoid synovium in inhibition of articular cartilage metabolism,” Arthritis and Rheumatism, vol. 21, no. 8, pp. 909–917, 1978. View at Scopus
  91. M. J. Palmoski and K. D. Brandt, “Effects of static and cyclic compressive loading on articular cartilage plugs in vitro,” Arthritis and Rheumatism, vol. 27, no. 6, pp. 675–681, 1984. View at Scopus
  92. R. L. Y. Sah, Y. J. Kim, J. Y. H. Doong, A. J. Grodzinsky, A. H. K. Plaas, and J. D. Sandy, “Biosynthetic response of cartilage explants to dynamic compression,” Journal of Orthopaedic Research, vol. 7, no. 5, pp. 619–636, 1989. View at Scopus
  93. J. J. Parkkinen, J. Ikonen, M. J. Lammi, J. Laakkonen, M. Tammi, and H. J. Helminen, “Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants,” Archives of Biochemistry and Biophysics, vol. 300, no. 1, pp. 458–465, 1993. View at Publisher · View at Google Scholar · View at Scopus
  94. M. D. Buschmann, Y. J. Kim, M. Wong, E. Frank, E. B. Hunziker, and A. J. Grodzinsky, “Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow,” Archives of Biochemistry and Biophysics, vol. 366, no. 1, pp. 1–7, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. E. H. Frank, M. Jin, A. M. Loening, M. E. Levenston, and A. J. Grodzinsky, “A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants,” Journal of Biomechanics, vol. 33, no. 11, pp. 1523–1527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. J. L. Palmer, A. L. Bertone, C. J. Malemud, B. G. Carter, R. S. Papay, and J. Mansour, “Site-specific proteoglycan characteristics of third carpal articular cartilage in exercised and nonexercised horses,” American Journal of Veterinary Research, vol. 56, no. 12, pp. 1570–1576, 1995. View at Scopus
  97. C. B. Little, P. Ghosh, and R. Rose, “The effect of strenuous versus moderate exercise on the metabolism of proteoglycans in articular cartilage from different weight-bearing regions of the equine third carpal bone,” Osteoarthritis and Cartilage, vol. 5, no. 3, pp. 161–172, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Okumura, G. H. Kim, M. Tagami, S. Haramaki, and T. Fujinaga, “Serum Keratan sulphate as a cartilage metabolic marker in horses: the effect of exercise,” Journal of Veterinary Medicine A, vol. 49, no. 4, pp. 195–197, 2002. View at Scopus
  99. P. Das, D. J. Schurman, and R. L. Smith, “Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear,” Journal of Orthopaedic Research, vol. 15, no. 1, pp. 87–93, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. A. M. Grøndahl and N. I. Dolvik, “Heritability estimations of osteochondrosis in the tibiotarsal joint and of bony fragments in the palmar/plantar portion of the metacarpo- and metatarsophalangeal joints of horses,” Journal of the American Veterinary Medical Association, vol. 203, no. 1, pp. 101–104, 1993. View at Scopus
  101. C. B. Webb, T. L. Lehman, and K. W. McCord, “Effects of an oral superoxide dismutase enzyme supplementation on indices of oxidative stress, proviral load, and CD4:CD8 ratios in asymptomatic FIV-infected cats,” Journal of Feline Medicine and Surgery, vol. 10, no. 5, pp. 423–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. I. Vouldoukis, D. Lacan, C. Kamate et al., “Antioxidant and anti-inflammatory properties of a Cucumis melo LC. extract rich in superoxide dismutase activity,” Journal of Ethnopharmacology, vol. 94, no. 1, pp. 67–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. S. M. Arent, J. Pellegrino, K. H. McKeever, et al., “Nutritional supplementation, body composition, performance, and hormonal responses in division I college football players,” Medicine and Science in Sports and Exercise. Supplement, vol. 5, p. S361, 2007.
  104. H. Chenal, A. Davit-Spraul, J. Brevet, et al., “The effects of an orally effective SOD on AIDS West African patients in a randomized double-blinded clinical study,” in Proceedings of the XVI International AIDS Conference, no. CDB0865, Toronto, Canada, 2006.
  105. J. Kick, B. Hauser, H. Bracht et al., “Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping,” Intensive Care Medicine, vol. 33, no. 4, pp. 694–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. J. M. McCord, “Free radicals and inflammation: protection of synovial fluid by superoxide dismutase,” Science, vol. 185, no. 4150, pp. 529–531, 1974. View at Scopus
  107. W. H. Betts and L. G. Cleland, “Effect of metal chelators and antiinflammatory drugs on the degradation of hyaluronic acid,” Arthritis and Rheumatism, vol. 25, no. 12, pp. 1469–1476, 1982. View at Scopus
  108. C. M. Muth, Y. Glenz, M. Klaus, P. Radermacher, G. Speit, and X. Leverve, “Influence of an orally effective SOD on hyperbaric oxygen-related cell damage,” Free Radical Research, vol. 38, no. 9, pp. 927–932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Baret, G. Jadot, and A. M. Michelson, “Pharmacokinetic and anti-inflammatory properties in the rat of superoxide dismutases (Cu SODs and Mn SOD) from various species,” Biochemical Pharmacology, vol. 33, no. 17, pp. 2755–2760, 1984. View at Publisher · View at Google Scholar · View at Scopus
  110. M. A. Arangoa, M. A. Campanero, M. J. Renedo, G. Ponchel, and J. M. Irache, “Gliadin nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics,” Pharmaceutical Research, vol. 18, no. 11, pp. 1521–1527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Dugas, “Glisodin: a nutraceutical product that promotes the oral delivery of superoxide dismutase,” Free Radical Biology and Medicine, vol. 33, p. S64, 2002.
  112. M. G. Clemente, S. De Virgiliis, J. S. Kang et al., “Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function,” Gut, vol. 52, no. 2, pp. 218–223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Drago, R. El Asmar, M. Di Pierro et al., “Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines,” Scandinavian Journal of Gastroenterology, vol. 41, no. 4, pp. 408–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. V. Stella, P. Vallée, P. Albrecht, and E. Postaire, “Gliadin films. I: preparation and in vitro evaluation as a carrier for controlled drug release,” International Journal of Pharmaceutics, vol. 121, no. 1, pp. 117–121, 1995. View at Publisher · View at Google Scholar · View at Scopus
  115. M. A. Arangoa, G. Ponchel, A. M. Orecchioni, M. J. Renedo, D. Duchêne, and J. M. Irache, “Bioadhesive potential of gliadin nanoparticulate systems,” European Journal of Pharmaceutical Sciences, vol. 11, no. 4, pp. 333–341, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. Personal Communication, Dr. David Griffin, Nutramax Laboratories, Edgewood, Md, USA, 2012.
  117. S. K. Powers, L. L. Ji, and C. Leeuwenburgh, “Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review,” Medicine and Science in Sports and Exercise, vol. 31, no. 7, pp. 987–997, 1999. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Kasapis and P. D. Thompson, “The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1563–1569, 2005. View at Publisher · View at Google Scholar · View at Scopus