About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 932838, 16 pages
http://dx.doi.org/10.1155/2012/932838
Review Article

Redox Homeostasis in Pancreatic Cells

Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague, Czech Republic

Received 13 September 2012; Accepted 30 October 2012

Academic Editor: Syed Ibrahim Rizvi

Copyright © 2012 Petr Ježek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. Ashcroft and P. Rorsman, “Diabetes mellitus and the β cell: the last ten years,” Cell, vol. 148, no. 6, pp. 1160–1171, 2012.
  2. D. Gupta, C. B. Krueger, and G. Lastra, “Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction,” Current Diabetes Reviews, vol. 8, no. 2, pp. 76–83, 2012.
  3. J. L. Jewell, E. Oh, and D. C. Thurmond, “Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4,” American Journal of Physiology, vol. 298, no. 3, pp. R517–R531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Leloup, L. Casteilla, A. Carrière et al., “Balancing Mitochondrial redox signaling: a key point in metabolic regulation,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 519–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. S. Jung and M. S. Lee, “Role of autophagy in diabetes and mitochondria,” Annals of the New York Academy of Sciences, vol. 1201, pp. 79–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. U. Gunasekaran and M. Gannon, “Type 2 diabetes and the aging pancreatic beta cell,” Aging, vol. 3, no. 6, pp. 565–575, 2011.
  7. Y. Lin and Z. Sun, “Current views on type 2 diabetes,” Journal of Endocrinology, vol. 204, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Tripathy and A. O. Chavez, “Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus,” Current Diabetes Reports, vol. 10, no. 3, pp. 184–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. H. Eckel, S. E. Kahn, E. Ferrannini et al., “Endocrine Society; American Diabetes Association; European Association for the Study of Diabetes. Obesity and type 2 diabetes: what can be unified and what needs to be individualized?” Diabetes Care, vol. 34, no. 6, pp. 1424–1430, 2011.
  10. P. Veld and M. Marichal, “Microscopic anatomy of the human islet of Langerhans,” Advances in Experimental Medicine and Biology, vol. 654, pp. 1–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ichise and P. E. Harris, “Imaging of β-cell mass and function,” Journal of Nuclear Medicine, vol. 51, no. 7, pp. 1001–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Cnop, M. Igoillo-Esteve, S. J. Hughes, J. N. Walker, I. Cnop, and A. Clark, “Longevity of human islet α- and β-cells,” Diabetes, Obesity and Metabolism, vol. 13, Supplement 1, pp. 39–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Tavana and C. Zhu, “Too many breaks (brakes): pancreatic β-cell senescence leads to diabetes,” Cell Cycle, vol. 10, no. 15, pp. 2471–2484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Fernandez-Valverde, R. J. Taft, and J. S. Mattick, “MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications,” Diabetes, vol. 60, no. 7, pp. 1825–1831, 2011. View at Publisher · View at Google Scholar
  15. R. A. DeFronzo and M. A. Abdul-Ghani, “Preservation of β-cell function: the key to diabetes prevention,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 8, pp. 2354–2366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Levetan, “Distinctions between islet neogenesis and β-cell replication: implications for reversal of Type 1 and 2 diabetes,” Journal of Diabetes, vol. 2, no. 2, pp. 76–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Demeterco, E. Hao, S. H. Lee, P. Itkin-Ansari, and F. Levine, “Adult human β-cell neogenesis?” Diabetes, Obesity and Metabolism, vol. 11, Supplement 4, pp. 46–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. S. Jun, “In vivo regeneration of insulin-producing β-cells,” Advances in Experimental Medicine and Biology, vol. 654, pp. 627–640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Noguchi, “Pancreatic stem/progenitor cells for the treatment of diabetes,” The Review of Diabetic Studies, vol. 7, no. 2, pp. 105–111, 2010. View at Scopus
  20. C. A. Robson-Doucette, S. Sultan, E. M. Allister et al., “Beta-cell uncoupling protein 2 regulates reactive oxygen species production, which influences both insulin and glucagon secretion,” Diabetes, vol. 60, no. 11, pp. 27110–27119, 2011.
  21. P. Ježek and L. Hlavatá, “Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 12, pp. 2478–2503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Dlasková, L. Hlavatá, and P. Ježek, “Oxidative stress caused by blocking of mitochondrial Complex I H+ pumping as a link in aging/disease vicious cycle,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 9, pp. 1792–1805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Dlasková, L. Hlavatá, J. Ježek, and P. Ježek, “Mitochondrial Complex I superoxide production is attenuated by uncoupling,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 10, pp. 2098–2109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Kussmaul and J. Hirst, “The mechanism of superoxide production by NADH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7607–7612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. King, M. S. Sharpley, and J. Hirst, “Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I) and production of reactive oxygen species,” Biochemistry, vol. 48, no. 9, pp. 2053–2062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. R. Pryde and J. Hirst, “Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer,” Journal of Biological Chemistry, vol. 286, no. 20, pp. 18056–18065, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. D. Brand, C. Affourtit, T. C. Esteves et al., “Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins,” Free Radical Biology and Medicine, vol. 37, no. 6, pp. 755–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. F. L. Muller, A. G. Roberts, M. K. Bowman, and D. M. Kramer, “Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production,” Biochemistry, vol. 42, no. 21, pp. 6493–6499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. F. L. Muller, Y. Liu, and H. van Remmen, “Complex III releases superoxide to both sides of the inner mitochondrial membrane,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 49064–49073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Ježek and L. Plecitá-Hlavatá, “Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 1790–1804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Diano and T. L. Horvath, “Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism,” Trends in Molecular Medicine, vol. 18, no. 1, pp. 52–58, 2012.
  32. R. J. Mailloux and M. E. Harper, “Uncoupling proteins and the control of mitochondrial reactive oxygen species production,” Free Radical Biology and Medicine, vol. 51, no. 6, pp. 1106–1115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Cannon, I. G. Shabalina, T. V. Kramarova, N. Petrovic, and J. Nedergaard, “Uncoupling proteins: a role in protection against reactive oxygen species-or not?” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 449–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Ježek, M. Žáčková, M. Růžička, E. Škobisová, and M. Jabůrek, “Mitochondrial uncoupling proteins—facts and fantasies,” Physiological Research, vol. 53, Supplement 1, pp. S199–S211, 2004. View at Scopus
  35. S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, “High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria,” FEBS Letters, vol. 416, no. 1, pp. 15–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Klingenberg and K. S. Echtay, “Uncoupling proteins: the issues from a biochemist point of view,” Biochimica et Biophysica Acta, vol. 1504, Supplement 1, pp. 128–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Ježek, M. Žáčková, M. Růžička, E. Škobisová, and M. Jabůrek, “Mitochondrial Uncoupling Proteins—Facts and Fantasies,” Physiological Research, vol. 53, no. 1, pp. S199–S211, 2004. View at Scopus
  38. P. Ježek, H. Engstová, M. Žáčková et al., “Fatty acid cycling mechanism and mitochondrial uncoupling proteins,” Biochimica et Biophysica Acta, vol. 1365, no. 1-2, pp. 319–327, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. V. P. Skulachev, “Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation,” FEBS Letters, vol. 294, no. 3, pp. 158–162, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. I. G. Shabalina and J. Nedergaard, “Mitochondrial (“mild”) uncoupling and ROS production: physiologically relevant or not?” Biochemical Society Transactions, vol. 39, no. 5, pp. 1305–1309, 2011.
  41. G. Mattiasson and P. G. Sullivan, “The emerging functions of UCP2 in health, disease, and therapeutics,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 1–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Krauss, C. Y. Zhang, and B. B. Lowell, “The mitochondrial uncoupling-protein homologues,” Nature Reviews Molecular Cell Biology, vol. 6, no. 3, pp. 248–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Y. Zhang, G. Baffy, P. Perret et al., “Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes,” Cell, vol. 105, no. 6, pp. 745–755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Parker, A. J. Vidal-Puig, V. Azzu, and M. D. Brand, “Dysregulation of glucose homeostasis in nicotinamide nucleotide transhydrogenase knockout mice is independent of uncoupling protein 2,” Biochimica et Biophysica Acta, vol. 1787, no. 12, pp. 1451–1457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Trenker, R. Malli, I. Fertschai, S. Levak-Frank, and W. F. Graier, “Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport,” Nature Cell Biology, vol. 9, no. 4, pp. 445–452, 2007.
  46. Z. Wu, J. Zhang, and B. Zhao, “Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins,” Antioxidants and Redox Signaling, vol. 11, no. 8, pp. 1805–1818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. P. S. Brookes, N. Parker, J. A. Buckingham et al., “UCPs—unlikely calcium porters,” Nature Cell Biology, vol. 10, no. 11, pp. 1237–1240, 2008. View at Scopus
  48. M. Jabůrek, M. Vařecha, R. E. Gimeno et al., “Transport function and regulation of mitochondrial uncoupling proteins 2 and 3,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26003–26007, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. K. D. Garlid, D. E. Orosz, M. Modrianský, S. Vassanelli, and P. Ježek, “On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein,” Journal of Biological Chemistry, vol. 271, no. 5, pp. 2615–2620, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Ježek, M. Modrianský, and K. D. Garlid, “A structure-activity study of fatty acid interaction with mitochondrial uncoupling protein,” FEBS Letters, vol. 408, no. 2, pp. 166–170, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Žáčková, E. Škobisová, E. Urbánková, and P. Ježek, “Activating ω-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3,” Journal of Biological Chemistry, vol. 278, no. 23, pp. 20761–20769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Jabůrek, S. Miyamoto, P. Di Mascio, K. D. Garlid, and P. Ježek, “Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2,” Journal of Biological Chemistry, vol. 279, no. 51, pp. 53097–53102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Ježek, M. Jabůrek, and K. D. Garlid, “Channel character of uncoupling protein-mediated transport,” FEBS Letters, vol. 584, no. 10, pp. 2135–2141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Urbánková, A. Voltchenko, P. Pohl, P. Ježek, and E. E. Pohl, “Transport kinetics of uncoupling proteins: analysis of UCP1 reconstituted in planar lipid bilayers,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 32497–32500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. V. Beck, M. Jabůrek, E. P. Breen, R. K. Porter, P. Ježek, and E. E. Pohl, “A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 474–479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Beck, M. Jabůrek, T. Demina et al., “High efficiency of polyunsaturated fatty acids in the activation of human uncoupling protein 1 and 2 reconstituted in planar lipid bilayers,” FASEB Journal, vol. 21, no. 4, pp. 1137–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Rupprecht, E. A. Sokolenko, V. Beck et al., “Role of the transmembrane potential in the membrane proton leak,” Biophysical Journal, vol. 98, no. 8, pp. 1503–1511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. K. S. Echtay, T. C. Esteves, J. L. Pakay et al., “A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling,” EMBO Journal, vol. 22, no. 16, pp. 4103–4110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. C. B. Chan, D. De Leo, J. W. Joseph et al., “Increased uncoupling protein-2 levels in β-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action,” Diabetes, vol. 50, no. 6, pp. 1302–1310, 2001. View at Scopus
  60. S. Krauss, C. Y. Zhang, L. Scorrano et al., “Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1831–1842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Y. Zhang, L. E. Parton, C. P. Ye et al., “Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced β cell dysfunction in isolated pancreatic islets,” Cell Metabolism, vol. 3, no. 6, pp. 417–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Produit-Zengaffinen, N. Davis-Lameloise, H. Perreten et al., “Increasing uncoupling protein-2 in pancreatic beta cells does not alter glucose-induced insulin secretion but decreases production of reactive oxygen species,” Diabetologia, vol. 50, no. 1, pp. 84–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Affourtit and M. D. Brand, “Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion,” Biochemical Journal, vol. 409, no. 1, pp. 84–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Affourtit, M. Jastroch, and M. D. Brand, “Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 609–616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Galetti, A. Sarre, H. Perreten, N. Produit-Zengaffinen, P. Muzzin, and F. Assimacopoulos-Jeannet, “Fatty acids do not activate UCP2 in pancreatic beta cells: comparison with UCP1,” Pflugers Archive, vol. 457, no. 4, pp. 931–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Pi, Y. Bai, K. W. Daniel et al., “Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic β-cell function,” Endocrinology, vol. 150, no. 7, pp. 3040–3048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. C. Lee, C. A. Robson-Doucette, and M. B. Wheeler, “Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin,” Journal of Endocrinology, vol. 203, no. 1, pp. 33–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Melov, “Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging,” Annals of the New York Academy of Sciences, vol. 908, pp. 219–225, 2000. View at Scopus
  69. M. Inoue, E. F. Sato, M. Nishikawa et al., “Mitochondrial generation of reactive oxygen species and its role in aerobic life,” Current Medicinal Chemistry, vol. 10, no. 23, pp. 2495–2505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Okado-Matsumoto and I. Fridovich, “Subcellular distribution of superoxide dismutases (SOD) in rat liver. Cu,Zn-SOD in mitochondria,” Journal of Biological Chemistry, vol. 276, no. 42, pp. 38388–38393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Nomura, H. Imai, T. Koumura, T. Kobayashi, and Y. Nakagawa, “Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis,” Biochemical Journal, vol. 351, no. 1, pp. 183–193, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. H. P. Wang, F. Q. Schafer, P. C. Goswami, L. W. Oberley, and G. R. Buettner, “Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle,” Free Radical Research, vol. 37, no. 6, pp. 621–630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Grankvist, S. L. Marklund, and I. B. Taljedal, “CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse,” Biochemical Journal, vol. 199, no. 2, pp. 393–398, 1981. View at Scopus
  74. K. Loh, H. Deng, A. Fukushima et al., “Reactive oxygen species enhance insulin sensitivity,” Cell Metabolism, vol. 10, no. 4, pp. 260–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. I. B. Leibiger, K. Brismar, and P. O. Berggren, “Novel aspects on pancreatic beta-cell signal-transduction,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 111–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. G. M. Reaven, “Insulin secretory function in type 2 diabetes: does it matter how you measure it?” Journal of Diabetes, vol. 1, no. 3, pp. 142–150, 2009. View at Scopus
  77. A. Wiederkehr and C. B. Wollheim, “Mitochondrial signals drive insulin secretion in the pancreatic β-cell,” Molecular and Cellular Endocrinology, vol. 353, no. 1-2, pp. 128–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Schiff, S. Loublier, A. Coulibaly, P. Bénit, H. Ogier de Baulny, and P. Rustin, “Mitochondria and diabetes mellitus: untangling a conflictive relationship?” Journal of Inherited Metabolic Disease, vol. 32, no. 6, pp. 684–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Portha, G. Lacraz, A. Chavey et al., “Islet structure and function in the GK rat,” Advances in Experimental Medicine and Biology, vol. 654, pp. 479–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Ježek, L. Plecitá-Hlavatá, K. Smolková, and R. Rossignol, “Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 5, pp. 604–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Smolková, L. Plecitá-Hlavatá, N. Bellance, G. Benard, R. Rossignol, and P. Ježek, “Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 7, pp. 950–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Akhmedov, U. De Marchi, C. B. Wollheim, and A. Wiederkehr, “Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells,” Biochimica et Biophysica Acta, vol. 1823, no. 10, pp. 1815–1824, 2012.
  83. J. H. Park, S. J. Kim, S. H. Park et al., “Glucagon-like peptide-1 enhances glucokinase activity in pancreatic β-cells through the association of Epac2 with Rim2 and Rab3A,” Endocrinology, vol. 153, no. 2, pp. 574–582, 2012.
  84. L. J. McCulloch, M. van de Bunt, M. Braun, K. N. Frayn, A. Clark, and A. L. Gloyn, “GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus,” Molecular Genetics and Metabolism, vol. 104, no. 4, pp. 648–653, 2011.
  85. K. T. Coppieters, A. Wiberg, N. Amirian, T. W. Kay, and M. G. von Herrath, “Persistent glucose transporter expression on pancreatic beta cells from longstanding type 1 diabetic individuals,” Diabetes Metabolism Research and Reviews, vol. 27, no. 8, pp. 746–754, 2011.
  86. M. T. Kaminski, S. Lenzen, and S. Baltrusch, “Real-time analysis of intracellular glucose and calcium in pancreatic beta cells by fluorescence microscopy,” Biochimica et Biophysica Acta, vol. 1823, no. 10, pp. 1697–1707, 2012.
  87. A. Merglen, S. Theander, B. Rubi, G. Chaffard, C. B. Wollheim, and P. Maechler, “Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells,” Endocrinology, vol. 145, no. 2, pp. 667–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Liang, C. Buettger, D. K. Berner, and F. M. Matschinsky, “Chronic effect of fatty acids on insulin release is not through the alternation of glucose metabolism in a pancreatic β-cell line (βHC9),” Diabetologia, vol. 40, no. 9, pp. 1018–1027, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. D. M. Porterfield, R. F. Corkey, R. H. Sanger, K. Tornheim, P. J. S. Smith, and B. E. Corkey, “Oxygen consumption oscillates in single clonal pancreatic β-cells (HIT),” Diabetes, vol. 49, no. 9, pp. 1511–1516, 2000. View at Scopus
  90. T. Špaček, J. Šantorová, K. Zacharovová et al., “Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 8, pp. 1522–1535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. J. S. McTaggart, R. H. Clark, and F. M. Ashcroft, “The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet,” Journal of Physiology, vol. 588, no. 17, pp. 3201–3209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Bennett, C. James, and K. Hussain, “Pancreatic β-cell KATP channels: hypoglycaemia and hyperglycaemia,” Reviews in Endocrine and Metabolic Disorders, vol. 11, no. 3, pp. 157–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Rorsman, M. Braun, and Q. Zhang, “Regulation of calcium in pancreatic α- and β-cells in health and disease,” Cell Calcium, vol. 51, no. 3-4, pp. 300–308, 2012.
  94. E. P. Cai, M. Casimir, S. A. Schroer et al., “In vivo role of focal adhesion kinase in regulating pancreatic β-cell mass and function through insulin signaling, actin dynamics, and granule trafficking,” Diabetes, vol. 61, no. 7, pp. 1708–1718, 2012.
  95. D. Zhu, Y. Zhang, P. P. Lam et al., “Dual role of VAMP8 in regulating insulin exocytosis and islet β Cell growth,” Cell Metabolism, vol. 16, no. 2, pp. 238–249, 2012.
  96. A. H. Rosengren, M. Braun, T. Mahdi et al., “Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes,” Diabetes, vol. 61, no. 7, pp. 1726–1733, 2012.
  97. L. E. Fridlyand and L. H. Philipson, “Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic β-cells,” Diabetes, vol. 53, no. 8, pp. 1942–1948, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Maechler, S. Carobbio, and B. Rubi, “In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, pp. 696–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Casimir, F. M. Lasorsa, B. Rubi et al., “Mitochondrial glutamate carrier GC1 as a newly identified player in the control of glucose-stimulated insulin secretion,” Journal of Biological Chemistry, vol. 284, no. 37, pp. 25004–25014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. W. Joseph, M. V. Jensen, O. Ilkayeva et al., “The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35624–35632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Stark, F. Pasquel, A. Turcu et al., “Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26578–26590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Heart, G. W. Cline, L. P. Collis, R. L. Pongratz, J. P. Gray, and P. J. S. Smith, “Role for malic enzyme, pyruvate carboxylation, and mitochondrial malate import in glucose-stimulated insulin secretion,” American Journal of Physiology, vol. 296, no. 6, pp. E1354–E1362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Jitrapakdee, A. Wutthisathapornchai, J. C. Wallace, and M. J. MacDonald, “Regulation of insulin secretion: role of mitochondrial signalling,” Diabetologia, vol. 53, no. 6, pp. 1019–1032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. V. Koshkin, X. Wang, P. E. Scherer, C. B. Chan, and M. B. Wheeler, “Mitochondrial functional state in clonal pancreatic β-cells exposed to free fatty acids,” Journal of Biological Chemistry, vol. 278, no. 22, pp. 19709–19715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Leloup, C. Tourrel-Cuzin, C. Magnan et al., “Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion,” Diabetes, vol. 58, no. 3, pp. 673–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. V. P. Bindokas, A. Kuznetsov, S. Sreenan, K. S. Polonsky, M. W. Roe, and L. H. Philipson, “Visualizing superoxide production in normal and diabetic rat islets of Langerhans,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9796–9801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. K. Sakai, K. Matsumoto, T. Nishikawa et al., “Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells,” Biochemical and Biophysical Research Communications, vol. 300, no. 1, pp. 216–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet β cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5203–5207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  109. G. A. Martens, Y. Cai, S. Hinke, G. Stangé, M. Van de Casteele, and D. Pipeleers, “Glucose suppresses superoxide generation in metabolically responsive pancreatic β cells,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20389–20396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Lacraz, F. Figeac, J. Movassat et al., “Diabetic β-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses,” PLoS ONE, vol. 4, no. 8, article e6500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Pi, Y. Bai, Q. Zhang et al., “Reactive oxygen species as a signal in glucose-stimulated insulin secretion,” Diabetes, vol. 56, no. 7, pp. 1783–1791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Saadeh, T. C. Ferrante, A. Kane, O. Shirihai, B. E. Corkey, and J. T. Deeney, “Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol,” PLoS One, vol. 7, no. 1, article e30200, 2012.
  113. C. Bouche, X. Lopez, A. Fleischman et al., “Insulin enhances glucose-stimulated insulin secretion in healthy humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 10, pp. 4770–4775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. P. Finocchietto, F. Barreyro, S. Holod et al., “Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: imlpications for the metabolic syndrome,” PLoS ONE, vol. 3, no. 3, article e1749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. D. C. Henstridge, B. G. Drew, M. F. Formosa et al., “The effect of the nitric oxide donor sodium nitroprusside on glucose uptake in human primary skeletal muscle cells,” Nitric Oxide, vol. 21, no. 2, pp. 126–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. S. J. Persaud, H. Asare-Anane, and P. M. Jones, “Insulin receptor activation inhibits insulin secretion from human islets of Langerhans,” FEBS Letters, vol. 510, no. 3, pp. 225–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Liu, T. Okada, A. Assmann et al., “Insulin signaling regulates mitochondrial function in pancreatic β-cells,” PLoS ONE, vol. 4, no. 11, article e7983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Brennand, D. Huangfu, and D. Melton, “All beta cells contribute equally to islet growth and maintenance.,” PLoS Biology, vol. 5, no. 7, article e163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. R. N. Kulkarni, J. C. Brüning, J. N. Winnay, C. Postic, M. A. Magnuson, and C. R. Kahn, “Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes,” Cell, vol. 96, no. 3, pp. 329–339, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Okada, W. L. Chong, J. Hu et al., “Insulin receptors in β-cells are critical for islet compensatory growth response to insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8977–8982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. H. R. Oliveira, R. Verlengia, C. R. O. Carvalho, L. R. G. Britto, R. Curi, and A. R. Carpinelli, “Pancreatic β-cells express phagocyte-like NAD(P)H oxidase,” Diabetes, vol. 52, no. 6, pp. 1457–1463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. Y. Uchizono, R. Takeya, M. Iwase et al., “Expression of isoforms of NADPH oxidase components in rat pancreatic islets,” Life Sciences, vol. 80, no. 2, pp. 133–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Newsholme, C. Gaudel, and M. Krause, “Mitochondria and diabetes. An intriguing pathogenetic role,” Advances in Experimental Medicine and Biology, vol. 942, pp. 235–247, 2012.
  124. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Morgan, H. R. Oliveira-Emilio, D. Keane et al., “Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line,” Diabetologia, vol. 50, no. 2, pp. 359–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. P. Newsholme, D. Morgan, E. Rebelato et al., “Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell,” Diabetologia, vol. 52, no. 12, pp. 2489–2498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Inoguchi, P. Li, F. Umeda et al., “High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells,” Diabetes, vol. 49, no. 11, pp. 1939–1945, 2000. View at Scopus
  128. M. Nakayama, T. Inoguchi, T. Sonta et al., “Increased expression of NAD(P)H oxidase in islets of animal models of type 2 diabetes and its improvement by an AT1 receptor antagonist,” Biochemical and Biophysical Research Communications, vol. 332, no. 4, pp. 927–933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. D. J. L. Murdock, J. Clarke, P. R. Flatt, Y. A. Barnett, and C. R. Barnett, “Role of CYP2E1 in ketone-stimulated insulin release in pancreatic B-cells,” Biochemical Pharmacology, vol. 67, no. 5, pp. 875–884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Elsner, W. Gehrmann, and S. Lenzen, “Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells,” Diabetes, vol. 60, no. 1, pp. 200–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. E. Rebelato, F. Abdulkader, R. Curi, and A. R. Carpinelli, “Control of the intracellular redox state by glucose participates in the insulin secretion mechanism,” PLoS One, vol. 6, no. 8, article e24507, 2011.
  132. S. Lenzen, “Oxidative stress: the vulnerable β-cell,” Biochemical Society Transactions, vol. 36, part 3, pp. 343–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Lenzen, J. Drinkgern, and M. Tiedge, “Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues,” Free Radical Biology and Medicine, vol. 20, no. 3, pp. 463–466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Tiedge, S. Lortz, J. Drinkgern, and S. Lenzen, “Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells,” Diabetes, vol. 46, no. 11, pp. 1733–1742, 1997. View at Scopus
  135. M. A. Modak, S. P. Datar, R. R. Bhonde, and S. S. Ghaskadbi, “Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status,” Journal of Comparative Physiology B, vol. 177, no. 2, pp. 247–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. M. A. Modak, P. B. Parab, and S. S. Ghaskadbi, “Pancreatic islets are very poor in rectifying oxidative DNA damage,” Pancreas, vol. 38, no. 1, pp. 23–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. R. Ivarsson, R. Quintens, S. Dejonghe et al., “Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin,” Diabetes, vol. 54, no. 7, pp. 2132–2142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. N. Welsh, B. Margulis, L. A. Borg et al., “Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus,” Molecular Medicine, vol. 1, no. 7, pp. 806–820, 1995. View at Scopus
  139. N. Tonooka, E. Oseid, H. Zhou, J. S. Harmon, and R. P. Robertson, “Glutathione peroxidase protein expression and activity in human islets isolated for transplantation,” Clinical Transplantation, vol. 21, no. 6, pp. 767–772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. P. Newsholme, P. I. H. De Bittencourt, C. O'Hagan, G. De Vito, C. Murphy, and M. S. Krause, “Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide,” Clinical Science, vol. 118, no. 5, pp. 341–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. M. S. Krause, N. H. McClenaghan, P. R. Flatt, P. I. de Bittencourt, C. Murphy, and P. Newsholme, “L-Arginine is essential forpancreatic beta-cell functional integrity, metabolism and defense from inflammatory challenge,” Journal of Endocrinology, vol. 211, no. 1, pp. 87–97, 2011.
  142. N. Bachnoff, M. Trus, and D. Atlas, “Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides,” Free Radical Biology and Medicine, vol. 50, no. 10, pp. 1355–1367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. T. M. Reinbothe, R. Ivarsson, D. Q. Li et al., “Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion,” Molecular Endocrinology, vol. 23, no. 6, pp. 893–900, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. F. Zhao and Q. Wang, “The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells,” Cell Bioscience, vol. 2, no. 1, article 22, 2012.
  145. K. S. Yang, S. W. Kang, H. A. Woo et al., “Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid,” Journal of Biological Chemistry, vol. 277, no. 41, pp. 38029–38036, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. T. Purves, A. Middlemas, S. Agthong et al., “A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy,” FASEB Journal, vol. 15, no. 13, pp. 2508–2514, 2001. View at Publisher · View at Google Scholar · View at Scopus
  147. D. Koya and G. L. King, “Protein kinase C activation and the development of diabetic complications,” Diabetes, vol. 47, no. 6, pp. 859–866, 1998. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Kaneto, Y. Kajimoto, J. I. Miyagawa et al., “Beneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity,” Diabetes, vol. 48, no. 12, pp. 2398–2406, 1999. View at Scopus
  149. J. S. Harmon, R. Stein, and R. P. Robertson, “Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11107–11113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. A. R. Giniatullin, F. Darios, A. Shakirzyanova, B. Davletov, and R. Giniatullin, “SNAP25 is a pre-synaptic target for the depressant action of reactive oxygen species on transmitter release,” Journal of Neurochemistry, vol. 98, no. 6, pp. 1789–1797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Smolková and P. Ježek, “The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells,” International Journal of Biochemistry & Cell Biology, vol. 2012, Article ID 273947, 2012. View at Publisher · View at Google Scholar
  152. J. P. Gray, K. N. Alavian, E. A. Jonas, and E. A. Heart, “NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells,” American Journal of Physiology, vol. 303, no. 2, pp. E191–E199, 2012.
  153. C. Tang, K. Koulajian, I. Schuiki et al., “Glucose-induced beta cell dysfunction in vivo in rats: link between oxidative stress and endoplasmic reticulum stress,” Diabetologia, vol. 55, no. 5, pp. 1366–1379, 2012.
  154. N. Li, F. Frigerio, and P. Maechler, “The sensitivity of pancreatic β-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress,” Biochemical Society Transactions, vol. 36, no. 5, pp. 930–934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. V. M. Victor, M. Rocha, R. Herance, and A. Hernandez-Mijares, “Oxidative stress and mitochondrial dysfunction in type 2 diabetes,” Current Pharmacological Design, vol. 17, no. 36, pp. 3947–3958, 2011.
  156. D. Pitocco, F. Zaccardi, E. Di Stasio et al., “Oxidative stress, nitric oxide, and diabetes,” The Review of Diabetic Studies, vol. 7, no. 1, pp. 15–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. P. Newsholme, E. P. Haber, S. M. Hirabara et al., “Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity,” Journal of Physiology, vol. 583, no. 1, pp. 9–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. S. Supale, L. Ning, T. Brun, and P. Maechler, “Mitochondrial dysfunction in pancreatic β cells,” Trends in Endocrinology and Metabolism, vol. 23, no. 9, pp. 477–487, 2012.
  159. M. E. Patti and S. Corvera, “The role of mitochondria in the pathogenesis of type 2 diabetes,” Endocrine Reviews, vol. 31, no. 3, pp. 364–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. X. Wang, M. Z. Vatamaniuk, C. A. Roneker et al., “Knockouts of SOD1 and GPX1 exert different impacts on murine islet function and pancreatic integrity,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 391–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. J. D. Acharya and S. S. Ghaskadbi, “Islets and their antioxidant defense,” Islets, vol. 2, no. 4, pp. 225–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. R. P. Robertson and J. S. Harmon, “Pancreatic islet β-cell and oxidative stress: the importance of glutathione peroxidase,” FEBS Letters, vol. 581, no. 19, pp. 3743–3748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. J. S. Harmon, M. Bogdani, S. D. Parazzoli et al., “β-cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice,” Endocrinology, vol. 150, no. 11, pp. 4855–4862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. K. L. Hoehn, A. B. Salmon, C. Hohnen-Behrens et al., “Insulin resistance is a cellular antioxidant defense mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 42, pp. 17787–17792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Y. Hur, H. S. Jung, and M. S. Lee, “Role of autophagy in β-cell function and mass,” Diabetes, Obesity and Metabolism, vol. 12, Supplement 2, pp. 20–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. H. S. Jung, K. W. Chung, J. Won Kim et al., “Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia,” Cell Metabolism, vol. 8, no. 4, pp. 318–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. L. P. Roma, S. M. Pascal, J. Duprez, and J. C. Jonas, “Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration,” Diabetologia, vol. 55, no. 8, pp. 2226–2237, 2012.
  169. I. Mehmeti, E. Gurgul-Convey, S. Lenzen, and S. Lortz, “Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation,” Biochimica et Biophysica Acta, vol. 1813, no. 10, pp. 1827–1835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. N. Hou, S. Torii, N. Saito, M. Hosaka, and T. Takeuchi, “Reactive oxygen species-mediated pancreatic β-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-jun N-terminal kinase, and mitogen-activated protein kinase phosphatases,” Endocrinology, vol. 149, no. 4, pp. 1654–1665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. W. Gehrmann, M. Elsner, and S. Lenzen, “Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells,” Diabetes, Obesity and Metabolism, vol. 12, Supplement 2, pp. 149–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Giacca, C. Xiao, A. I. Oprescu, A. C. Carpentier, and G. F. Lewis, “Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies,” American Journal of Physiology, vol. 300, no. 2, pp. E255–E262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. M. F. Graciano, M. M. Valle, A. Kowluru, R. Curi, and A. R. Carpinelli, “Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets,” Islets, vol. 3, no. 5, pp. 213–223, 2011.
  174. M. Bensellam, D. R. Laybutt, and J. C. Jonas, “The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions,” Molecular and Cellular Endocrinology, vol. 364, no. 1-2, pp. 1–27, 2012.
  175. T. Nishikawa and E. Araki, “Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications,” Antioxidants and Redox Signaling, vol. 9, no. 3, pp. 343–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. W. I. Sivitz and M. A. Yorek, “Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 12, no. 4, pp. 537–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. H. Lu, V. Koshkin, E. M. Allister, A. V. Gyulkhandanyan, and M. B. Wheeler, “Molecular and metabolic evidence for mitochondrial defects associated with β-cell dysfunction in a mouse model of type 2 diabetes,” Diabetes, vol. 59, no. 2, pp. 448–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. C. W. Liou, J. B. Chen, M. M. Tiao et al., “Mitochondrial DNA coding and control region variants as genetic risk factors for type 2 diabetes mellitus,” Diabetes, vol. 2, no. 1, pp. 2642–2651, 2012.
  179. H. Weiss, L. Wester-Rosenloef, C. Koch et al., “The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and β-cell mass adaptation in conplastic B6-mtFVB mice,” Endocrinology, vol. 153, no. 10, pp. 4666–4676, 2012.
  180. K. G. Bensch, J. L. Mott, S. W. Chang et al., “Selective mtDNA mutation accumulation results in β-cell apoptosis and diabetes development,” American Journal of Physiology, vol. 296, no. 4, pp. E672–E680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. O. Hashizume, A. Shimizu, M. Yokota et al., “Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 26, pp. 10528–10533, 2012.
  182. P. W. Wang, T. K. Lin, S. W. Weng, and C. W. Liou, “Mitochondrial DNA variants in the pathogenesis of type 2 diabetes—relevance of Asian population studies,” The Review of Diabetic Studies, vol. 6, no. 4, pp. 237–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. L. M. Cree, S. K. Patel, A. Pyle et al., “Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets,” Diabetologia, vol. 51, no. 8, pp. 1440–1443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  184. J. E. Salles, T. S. Kasamatsu, S. A. Dib, and R. S. Moisés, “β-cell function in individuals carrying the mitochondrial tRNA Leu (UUR) mutation,” Pancreas, vol. 34, no. 1, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. T. Koeck, A. H. Olsson, M. D. Nitert et al., “A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes,” Cell Metabolism, vol. 13, no. 1, pp. 80–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. J. P. Silva, M. Köhler, C. Graff et al., “Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes,” Nature Genetics, vol. 26, no. 3, pp. 336–340, 2000. View at Publisher · View at Google Scholar · View at Scopus
  187. H. Mizukami, R. Wada, M. Koyama et al., “Augmented β cell loss and mitochondrial abnormalities in sucrose-fed GK rats,” Virchows Archiv, vol. 452, no. 4, pp. 383–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. C. G. Östenson and S. Efendic, “Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans,” Diabetes, Obesity and Metabolism, vol. 9, Supplement 2, pp. 180–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. P. Serradas, M. H. Giroix, C. Saulnier et al., “Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of noninsulin-dependent diabetes,” Endocrinology, vol. 136, no. 12, pp. 5623–5631, 1995. View at Scopus
  190. L. Alán, T. Špaček, J. Zelenka et al., “Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats,” Transplantation Proceedings, vol. 43, no. 9, pp. 3281–3284, 2011.
  191. A. Dlasková, T. Špaček, J. Šantorová et al., “4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet β-cells, an experimental model of type-2 diabetes,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 1327–1341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  192. S. Sethumadhavan, J. Vasquez-Vivar, R. Q. Migrino, L. Harmann, H. J. Jacob, and J. Lazar, “Mitochondrial DNA variant for complex I reveals a role in diabetic cardiac remodeling,” Journal of Biological Chemistry, vol. 287, no. 26, pp. 22174–22182, 2012.
  193. Y. Ihara, S. Toyokuni, K. Uchida et al., “Hyperglycemia causes oxidative stress in pancreatic β-cells of GK rats, a model of type 2 diabetes,” Diabetes, vol. 48, no. 4, pp. 927–932, 1999. View at Scopus
  194. S. Del Guerra, R. Lupi, L. Marselli et al., “Functional and molecular defects of pancreatic islets in human Type 2 diabetes,” Diabetes, vol. 54, no. 3, pp. 727–735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  195. S. I. Gorogawa, Y. Kajimoto, Y. Umayahara et al., “Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 57, no. 1, pp. 1–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  196. V. G. Norton, K. W. Marvin, P. Yau, and E. M. Bradbury, “Nucleosome linking number change controlled by acetylation of histones H3 and H4,” Journal of Biological Chemistry, vol. 265, no. 32, pp. 19848–19852, 1990. View at Scopus
  197. M. J. Boucher, L. Selander, L. Carlsson, and H. Edlund, “Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms,” Journal of Biological Chemistry, vol. 281, no. 10, pp. 6395–6403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. K. L. Wu, M. Gannon, M. Peshavaria et al., “Hepatocyte nuclear factor 3β is involved in pancreatic β-cell-specific transcription of the pdx-1 gene,” Molecular and Cellular Biology, vol. 17, no. 10, pp. 6002–6013, 1997. View at Scopus
  199. S. H. Panowski, S. Wolff, H. Aguilaniu, J. Durieux, and A. Dillin, “PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans,” Nature, vol. 447, no. 7144, pp. 550–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  200. D. Liu, D. Pavlovic, M. C. Chen, M. Flodström, S. Sandler, and D. L. Eizirik, “Cytokines induce apoptosis in β-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS(-/-)),” Diabetes, vol. 49, no. 7, pp. 1116–1122, 2000. View at Scopus
  201. A. K. Azevedo-Martins, S. Lortz, S. Lenzen, R. Curi, D. L. Eizirik, and M. Tiedge, “Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-κB activation in insulin-producing cells,” Diabetes, vol. 52, no. 1, pp. 93–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  202. G. Saxena, J. Chen, and A. Shalev, “Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein,” Journal of Biological Chemistry, vol. 285, no. 6, pp. 3997–4005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Chen, S. T. Hui, F. M. Couto et al., “Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes,” FASEB Journal, vol. 22, no. 10, pp. 3581–3594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  204. J. Chen, G. Fontes, G. Saxena, V. Poitout, and A. Shalev, “Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated β-cell death,” Diabetes, vol. 59, no. 2, pp. 440–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  205. O. N. Spindel, C. World, and B. C. Berk, “Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms,” Antioxidants and Redox Signaling, vol. 16, no. 6, pp. 587–596, 2012.
  206. C. M. Oslowski, T. Hara, B. O'Sullivan-Murphy et al., “Thioredoxin-interacting protein mediates ER stress-induced β Cell death through initiation of the inflammasome,” Cell Metabolism, vol. 16, no. 2, pp. 265–273, 2012.
  207. A. Sarre, J. Gabrielli, G. Vial, X. M. Leverve, and F. Assimacopoulos-Jeannet, “Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells,” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 142–150, 2012.
  208. D. R. Laybutt, Y. C. Hawkins, J. Lock et al., “Influence of diabetes on the loss of beta cell differentiation after islet transplantation in rats,” Diabetologia, vol. 50, no. 10, pp. 2117–2125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  209. G. Wolf, N. Aumann, M. Michalska et al., “Peroxiredoxin III protects pancreatic β cells from apoptosis,” Journal of Endocrinology, vol. 207, no. 2, pp. 163–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. S. Lortz and M. Tiedge, “Sequential inactivation of reactive oxygen species by combined overexpression of SOD isoforms and catalase in insulin-producing cells,” Free Radical Biology and Medicine, vol. 34, no. 6, pp. 683–688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  211. S. Lortz, E. Gurgul-Convey, S. Lenzen, and M. Tiedge, “Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines,” Diabetologia, vol. 48, no. 8, pp. 1541–1548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  212. A. G. Huebschmann, J. G. Regensteiner, H. Vlassara, and J. E. B. Reusch, “Diabetes and advanced glycoxidation end products,” Diabetes Care, vol. 29, no. 6, pp. 1420–1432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  213. R. Hamaoka, J. Fujii, J. I. Miyagawa et al., “Overexpression of the aldose reductase gene induces apoptosis in pancreatic β-cells by causing a redox imbalance,” Journal of Biochemistry, vol. 126, no. 1, pp. 41–47, 1999. View at Scopus
  214. H. Kaneto, G. Xu, K. H. Song et al., “Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 31099–31104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  215. B. Konarkowska, J. F. Aitken, J. Kistler, S. Zhang, and G. J. S. Cooper, “Thiol reducing compounds prevent human amylin-evoked cytotoxicity,” FEBS Journal, vol. 272, no. 19, pp. 4949–4959, 2005. View at Publisher · View at Google Scholar · View at Scopus
  216. J. Montane, A. A. Klimek-Abercrombie, K. J. Potter, C. Westwell-Roper, and C. Bruce Verchere, “Metabolic stress, IAPP and islet amyloid,” Diabetes, Obesity and Metabolism, vol. 14, Supplement 3, pp. 68–77, 2012.
  217. P. Westermark, A. Andersson, and G. T. Westermark, “Islet amyloid polypeptide, islet amyloid, and diabetes mellitus,” Physiological Reviews, vol. 91, no. 3, pp. 795–826, 2011. View at Publisher · View at Google Scholar · View at Scopus