About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 935483, 11 pages
http://dx.doi.org/10.1155/2012/935483
Research Article

Interaction between Overtraining and the Interindividual Variability May (Not) Trigger Muscle Oxidative Stress and Cardiomyocyte Apoptosis in Rats

1Laboratory of Exercise Biochemistry (LABEX), Biology Institute, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
2Laboratory of Instrumentation for Biomechanics (LIB), Faculty of Physical Education (FEF), University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
3Laboratory of Histology, Biology Institute, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil

Received 9 April 2012; Accepted 16 April 2012

Academic Editor: Michalis G. Nikolaidis

Copyright © 2012 Rodrigo Luiz Perroni Ferraresso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. O. Richardson, M. B. Andersen, and T. Morris, Eds., Overtraining Athletes: Personal Journeys in Sports, Human Kinetics, Champaign, Ill, USA, 2008.
  2. R. Meeusen, M. Duclos, M. Gleeson, G. Rietjens, J. Steinacker, and A. Urhausen, “Prevention, diagnosis and treatment of the Overtraining Syndrome. ECSS position statement 'task force',” European Journal of Sport Science, vol. 6, no. 1, pp. 1–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lehmann, C. Foster, and J. Keul, “Overtraining in endurance athletes: a brief review,” Medicine and Science in Sports and Exercise, vol. 25, no. 7, pp. 854–862, 1993. View at Scopus
  4. R. Hohl, R. L. P. Ferraresso, R. B. De Oliveira, R. Lucco, R. Brenzikofer, and D. V. De Macedo, “Development and characterization of an overtraining animal model,” Medicine and Science in Sports and Exercise, vol. 41, no. 5, pp. 1155–1163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. O. Holloszy and E. F. Coyle, “Adaptations of skeletal muscle to endurance exercise and their metabolic consequences,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 56, no. 4, pp. 831–838, 1984. View at Scopus
  6. I. Fridovich, “Mitochondria: are they the seat of senescence?” Aging Cell, vol. 3, no. 1, pp. 13–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. Alessio, “Exercise-induced oxidative stress,” Medicine and Science in Sports and Exercise, vol. 25, no. 2, pp. 218–224, 1993. View at Scopus
  8. A. M. Hruszkewycz, “Evidence for mitochondrial DNA damage by lipid peroxidation,” Biochemical and Biophysical Research Communications, vol. 153, no. 1, pp. 191–197, 1988. View at Scopus
  9. G. Paradies, G. Petrosillo, M. Pistolese, and F. M. Ruggiero, “Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage,” Gene, vol. 286, no. 1, pp. 135–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Raha† and B. H. Robinson, “Mitochondria, oxygen free radicals, and apoptosis,” American Journal of Medical Genetics, vol. 106, no. 1, pp. 62–70, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhang, O. Marcillat, C. Giulivi, L. Ernster, and K. J. A. Davies, “The oxidative inactivation of mitochondrial electron transport chain components and ATPase,” Journal of Biological Chemistry, vol. 265, no. 27, pp. 16330–16336, 1990. View at Scopus
  12. H. Sies, Oxidative Stress, Academic Press, London, UK, 1985.
  13. A. McArdle, D. Pattwell, A. Vasilaki, R. D. Griffiths, and M. J. Jackson, “Contractile activity-induced oxidative stress: cellular origin and adaptive responses,” American Journal of Physiology, vol. 280, no. 3, pp. C621–C627, 2001. View at Scopus
  14. M. Higuchi, L. J. Cartier, M. Chen, and J. O. Holloszy, “Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise,” Journals of Gerontology, vol. 40, no. 3, pp. 281–286, 1985. View at Scopus
  15. J. Hollander, R. Fiebig, M. Gore et al., “Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training,” American Journal of Physiology, vol. 277, no. 3, pp. R856–R862, 1999. View at Scopus
  16. M. H. Laughlin, T. Simpson, W. L. Sexton, O. R. Brown, J. K. Smith, and R. J. Korthuis, “Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training,” Journal of Applied Physiology, vol. 68, no. 6, pp. 2337–2343, 1990. View at Scopus
  17. S. K. Powers, D. Criswell, J. Lawler et al., “Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle,” American Journal of Physiology, vol. 266, no. 2, pp. R375–R380, 1994. View at Scopus
  18. S. K. Powers and M. J. Jackson, “Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production,” Physiological Reviews, vol. 88, no. 4, pp. 1243–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. M. Tidus, “Radical species in inflammation and overtraining,” Canadian Journal of Physiology and Pharmacology, vol. 76, pp. 553–538, 1998.
  20. L. L. Ji, “Antioxidants and oxidative stress in exercise,” Proceedings of the Society for Experimental Biology and Medicine, vol. 222, pp. 283–292, 1999.
  21. K. George, R. Shave, D. Warburton, J. Scharhag, and G. Whyte, “Exercise and the heart: can you have too much of a good thing?” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1390–1392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Scott and D. E. R. Warburton, “Mechanisms underpinning exercise-induced changes in left ventricular function,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1400–1407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. C. Huang, T. J. Lin, C. C. Chen, and W.-T. Lin, “Endurance training accelerates exhaustive exercise-induced mitochondrial DNA deletion and apoptosis of left ventricle myocardium in rats,” European Journal of Applied Physiology, vol. 107, no. 6, pp. 697–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Jackson, S. Papa, J. Bolaños et al., “Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function,” Molecular Aspects of Medicine, vol. 23, no. 1–3, pp. 209–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Chabi, V. Ljubicic, K. J. Menzies, J. H. Huang, A. Saleem, and D. A. Hood, “Mitochondrial function and apoptotic susceptibility in aging skeletal muscle,” Aging Cell, vol. 7, no. 1, pp. 2–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Hohl, L. A. S. Nunes, R. A. Reis et al., “Glutamine and glutamate reference intervals as a clinical tool to detect training intolerance during training and overtraining,” in An International Perspective on Topics in Sports Medicine and Sports Injury, K. Zaslav, Ed., pp. 41–64, 2012.
  27. E. Zerbetto, L. Vergani, and F. Dabbeni-Sala, “Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels,” Electrophoresis, vol. 18, no. 11, pp. 2059–2064, 1997. View at Scopus
  28. A. M. Molnar, A. A. Alves, L. Pereira-da-Silva, D. V. Macedo, and F. Dabbeni-Sala, “Evaluation by blue native polyacrylamide electrophoresis colorimetric staining of the effects of physical exercise on the activities of mitochondrial complexes in rat muscle,” Brazilian Journal of Medical and Biological Research, vol. 37, no. 7, pp. 939–947, 2004. View at Scopus
  29. P. A. Srere, “Citrate synthase,” Methods in Enzymology, vol. 13, pp. 3–11, 1969. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Schagger and G. von Jagow, “Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form,” Analytical Biochemistry, vol. 199, no. 2, pp. 223–231, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  32. I. K. Smith, T. L. Vierheller, and C. A. Thorne, “Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid),” Analytical Biochemistry, vol. 175, no. 2, pp. 408–413, 1988. View at Scopus
  33. M. Uchiyama and M. Mihara, “Determination of malonaldehyde precursor in tissues by thiobarbituric acid test,” Analytical Biochemistry, vol. 86, no. 1, pp. 271–278, 1978. View at Scopus
  34. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Scopus
  35. S. V. Brooks, A. Vasilaki, L. M. Larkin, A. McArdle, and M. J. Jackson, “Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor κB activation,” Journal of Physiology, vol. 586, no. 16, pp. 3979–3990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. M. Alessio and A. H. Goldfarb, “Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training,” Journal of Applied Physiology, vol. 64, no. 4, pp. 1333–1336, 1988. View at Scopus
  37. L. L. Ji, F. W. Stratman, and H. A. Lardy, “Antioxidant enzyme systems in rat liver and skeletal muscle,” Archives of Biochemistry and Biophysics, vol. 263, no. 1, pp. 150–160, 1988. View at Scopus
  38. R. Jenkins, “The role of superoxide dismutase and catalase in muscle fatigue,” in Biochemistry of Exercise, H. Knuttgen, Ed., vol. 13, pp. 467–471, Human Kinetics, Champaign, Ill, USA, 1983.
  39. A. T. Quintanilha, “Effects of physical exercise and/or vitamin E on tissue oxidative metabolism,” Biochemical Society Transactions, vol. 12, no. 3, pp. 403–404, 1984. View at Scopus
  40. C. Leeuwenburgh, J. Hollander, S. Leichtweis, M. Griffiths, M. Gore, and L. L. Ji, “Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific,” American Journal of Physiology, vol. 272, no. 1, pp. R363–R369, 1997. View at Scopus
  41. J. L. Morales-López, E. Agüera, F. Miró, and A. Diz, “Variations in fibre composition of the gastrocnemius muscle in rats subjected to speed training,” Histology and Histopathology, vol. 5, no. 3, pp. 359–364, 1990. View at Scopus
  42. L. L. Ji, “Antioxidant signaling in skeletal muscle: a brief review,” Experimental Gerontology, vol. 42, no. 7, pp. 582–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Z.-H. Zhou, A. P. Johnson, and T. A. Rando, “NFκB and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1405–1416, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. C. K. Sen, E. Marin, M. Kretzschmar, and O. Hänninen, “Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization,” Journal of Applied Physiology, vol. 73, no. 4, pp. 1265–1272, 1992. View at Scopus
  45. A. Frankiewicz-Jóźko, J. Faff, and B. Sieradzan-Gabelska, “Changes in concentrations of tissue free radical marker and serum creatine kinase during the post exercise period in rats,” European Journal of Applied Physiology and Occupational Physiology, vol. 74, no. 5, pp. 470–474, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. Pinho, M. E. Andrades, M. R. Oliveira et al., “Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise,” Cell Biology International, vol. 30, no. 10, pp. 848–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Radák, T. Kaneko, S. Tahara et al., “The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes,” Free Radical Biology and Medicine, vol. 27, no. 1-2, pp. 69–74, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Navarro, C. Gomez, J. M. López-Cepero, and A. Boveris, “Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer,” American Journal of Physiology, vol. 286, no. 3, pp. R505–R511, 2004. View at Scopus
  49. P. K. Thomas, J. M. Cooper, R. H. King et al., “Myopathy in vitamin E deficient rats: muscle fibre necrosis associated with disturbances of mitochondrial function,” Journal of Anatomy, vol. 183, no. 3, pp. 451–461, 1993. View at Scopus
  50. H. Michel, J. Behr, A. Harrenga, and A. Kannt, “Cytochrome c oxidase: structure and spectroscopy,” Annual Review of Biophysics and Biomolecular Structure, vol. 27, pp. 329–356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. L. L. Ji, F. W. Stratman, and H. A. Lardy, “Enzymatic down regulation with exercise in rat skeletal muscle,” Archives of Biochemistry and Biophysics, vol. 263, no. 1, pp. 137–149, 1988. View at Scopus
  52. J. Hirst, J. Carroll, I. M. Fearnley, R. J. Shannon, and J. E. Walker, “The nuclear encoded subunits of complex I from bovine heart mitochondria,” Biochimica et Biophysica Acta, vol. 1604, no. 3, pp. 135–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. U. Schulte, V. Haupt, A. Abelmann et al., “A reductase/isomerase subunit of mitochondrial NADH: ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex,” Journal of Molecular Biology, vol. 292, no. 3, pp. 569–580, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. M. A. Calvaruso, J. Smeitink, and L. Nijtmans, “Electrophoresis techniques to investigate defects in oxidative phosphorylation,” Methods, vol. 46, no. 4, pp. 281–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. A. A. Franco, R. S. Odom, and T. A. Rando, “Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle,” Free Radical Biology and Medicine, vol. 27, no. 9-10, pp. 1122–1132, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. S. K. Powers, D. Criswell, J. Lawler et al., “Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium,” American Journal of Physiology, vol. 265, no. 6, pp. H2094–H2098, 1993. View at Scopus
  57. C. D. Phung, J. A. Ezieme, and J. F. Turrens, “Hydrogen peroxide metabolism in skeletal muscle mitochondria,” Archives of Biochemistry and Biophysics, vol. 315, no. 2, pp. 479–482, 1994. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Ascensão, J. Magalhães, J. M. C. Soares et al., “Endurance training limits the functional alterations of heart rat mitochondria submitted to in vitro anoxia-reoxygenation,” International Journal of Cardiology, vol. 109, no. 2, pp. 169–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Ascensão, J. Magalhães, J. M. C. Soares et al., “Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis,” American Journal of Physiology, vol. 289, no. 2, pp. H722–H731, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Gul, B. Demircan, S. Taysi et al., “Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart,” Comparative Biochemistry and Physiology, vol. 143, no. 2, pp. 239–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Morán, J. Delgado, B. González, R. Manso, and A. Megías, “Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training,” Acta Physiologica Scandinavica, vol. 180, no. 2, pp. 157–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Fenning, G. Harrison, D. Dwyer, R. R. Meyer, and L. Brown, “Cardiac adaptation to endurance exercise in rats,” Molecular and Cellular Biochemistry, vol. 251, no. 1-2, pp. 51–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. C. A. O'Neill, C. L. Stebbins, S. Bonigut, B. Halliwell, and J. C. Longhurst, “Production of hydroxyl radicals in contracting skeletal muscle of cats,” Journal of Applied Physiology, vol. 81, no. 3, pp. 1197–1206, 1996. View at Scopus
  64. J. M. Davis, E. A. Murphy, M. D. Carmichael et al., “Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage,” American Journal of Physiology, vol. 292, no. 6, pp. R2168–R2173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Komulainen and V. Vihko, “Exercise-induced necrotic muscle damage and enzyme release in the four days following prolonged submaximal running in rats,” Pflugers Archiv European Journal of Physiology, vol. 428, no. 3-4, pp. 346–351, 1994. View at Scopus
  66. H. Esterbauer, K. H. Cheeseman, M. U. Dianzani, G. Poli, and T. F. Slater, “Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes,” Biochemical Journal, vol. 208, no. 1, pp. 129–140, 1982. View at Scopus
  67. M. G. Nikolaidis and A. Z. Jamurtas, “Blood as a reactive species generator and redox status regulator during exercise,” Archives of Biochemistry and Biophysics, vol. 490, no. 2, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus