About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 945071, 7 pages
http://dx.doi.org/10.1155/2012/945071
Research Article

Study of αB-Crystallin Expression in Gerbil BCAO Model of Transient Global Cerebral Ischemia

Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, China

Received 31 July 2012; Revised 13 September 2012; Accepted 14 September 2012

Academic Editor: Daniela Giustarini

Copyright © 2012 Ting Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. L. Hagemann, W. C. Boelens, E. F. Wawrousek, and A. Messing, “Suppression of GFAP toxicity by αB-crystallin in mouse models of Alexander disease,” Human Molecular Genetics, vol. 18, no. 7, pp. 1190–1199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Palminiello, K. Jarzabek, K. Kaur et al., “Upregulation of phosphorylated αB-crystallin in the brain of children and young adults with Down syndrome,” Brain Research, vol. 1268, pp. 162–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Hegen, J. Wanschitz, R. Ehling et al., “Anti-αB-crystallin immunoreactivity in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy,” Journal of the Peripheral Nervous System, vol. 15, no. 2, pp. 150–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Karch and D. R. Borchelt, “An examination of αb-crystallin as a modifier of SOD1 aggregate pathology and toxicity in models of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 113, no. 5, pp. 1092–1100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Magalhães, S. D. Santos, and M. J. Saraiva, “αB-crystallin (HspB5) in familial amyloidotic polyneuropathy,” International Journal of Experimental Pathology, vol. 91, no. 6, pp. 515–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. K. Hayashi, “Myofibrillar myopathy,” Brain Nerve, vol. 63, no. 11, pp. 1179–1188, 2011.
  7. J. Ojha, R. V. Karmegam, J. Gunasingh Masilamoni, A. V. Terry, and A. G. Cashikar, “Behavioral defects in chaperone-deficient Alzheimer's disease model mice,” PLoS One, vol. 6, no. 2, Article ID e16550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. B. Rothbard, X. Zhao, O. Sharpe et al., “Chaperone activity of α B-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis,” Journal of Immunology, vol. 186, no. 7, pp. 4263–4268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Djabali, B. de Nechaud, F. Landon, and M. M. Portier, “αB-crystallin interacts with intermediate filaments in response to stress,” Journal of Cell Science, vol. 110, no. 21, pp. 2759–2769, 1997. View at Scopus
  10. N. Mercatelli, I. Dimauro, S. A. Ciafré, M. G. Farace, and D. Caporossi, “αB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts,” Free Radical Biology and Medicine, vol. 49, no. 3, pp. 374–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. F. A. J. M. van de Klundert, M. L. J. Gijsen, P. R. L. A. van den Ijssel, L. H. E. H. Snoeckx, and W. W. de Jong, “αB-crystallin and hsp25 in neonatal cardiac cells—differences in cellular localization under stress conditions,” European Journal of Cell Biology, vol. 75, no. 1, pp. 38–45, 1998. View at Scopus
  12. P. Verschuure, Y. Croes, P. R. L. A. van den IJssel, R. A. Quinlan, W. W. de Jong, and W. C. Boelens, “Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 2, pp. 117–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Ha, T. S. Kim, D. H. Yoon, Y. E. Cho, S. G. Huh, and K. C. Lee, “Reinduced expression of developmental proteins (nestin, small heat shock protein) in and around cerebral arteriovenous malformations,” Clinical Neuropathology, vol. 22, no. 5, pp. 252–261, 2003. View at Scopus
  14. Y. Enomoto, S. Adachi, R. Matsushima-Nishiwaki et al., “αB-crystallin extracellularly suppresses ADP-induced granule secretion from human platelets,” FEBS Letters, vol. 583, no. 15, pp. 2464–2468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Bousette, S. Chugh, V. Fong et al., “Constitutively active calcineurin induces cardiac endoplasmic reticulum stress and protects against apoptosis that is mediated by α-crystallin-B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18481–18486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Shin, S. W. Kim, C. M. Lim, J. Y. Jeong, C. S. Piao, and J. K. Lee, “αB-crystallin suppresses oxidative stress-induced astrocyte apoptosis by inhibiting caspase-3 activation,” Neuroscience Research, vol. 64, no. 4, pp. 355–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Watanabe, S. Kato, H. Nakata, T. Ishida, N. Ohuchi, and C. Ishioka, “αB-crystallin: a novel p53-target gene required for p53-dependent apoptosis,” Cancer Science, vol. 100, no. 12, pp. 2368–2375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Shin, J. Y. Jeong, Y. Jin, I. D. Kim, and J. K. Lee, “P38β MAPK affords cytoprotection against oxidative stress-induced astrocyte apoptosis via induction of αB-crystallin and its anti-apoptotic function,” Neuroscience Letters, vol. 501, no. 3, pp. 132–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. B. Velotta, N. Kimura, S. H. Chang et al., “αb-crystallin improves murine cardiac function and attenuates apoptosis in human endothelial cells exposed to ischemia-reperfusion,” Annals of Thoracic Surgery, vol. 91, no. 6, pp. 1907–1913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W.-F. Hu, L. Gong, Z. Cao et al., “αA- and αB-crystallins interact with caspase-3 and bax to guard mouse lens development,” Current Molecular Medicine, vol. 12, no. 2, pp. 177–187, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. S. Ousman, B. H. Tomooka, J. M. van Noort et al., “Protective and therapeutic role for αB-crystallin in autoimmune demyelination,” Nature, vol. 448, no. 7152, pp. 474–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. I. J. Benjamin and D. R. McMillan, “Stress (heat shock) proteins molecular chaperones in cardiovascular biology and disease,” Circulation Research, vol. 83, no. 2, pp. 117–132, 1998. View at Scopus
  23. R. C. Williams Jr., K. Sugiura, and E. M. Tan, “Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 50, no. 4, pp. 1239–1247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Sánchez, J. Díaz-Nido, and J. Avila, “Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function,” Progress in Neurobiology, vol. 61, no. 2, pp. 133–168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Fujita, E. Ohto, E. Katayama, and Y. Atomi, “αB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly,” Journal of Cell Science, vol. 117, no. 9, pp. 1719–1726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Hu, L. Zeng, L. Xie et al., “Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-β1 in Golgi apparatus in gerbils following transient forebrain ischemia,” Neurochemical Research, vol. 32, no. 11, pp. 1927–1931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. R. L. A. van den Ijssela, P. Overkampa, U. Knaufb, M. Gaestelb, and W. W. de Jong, “αA-crystallin confers cellular thermoresistance,” FEBS Letters, vol. 355, no. 1, pp. 54–56, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Muchowski and J. L. Wacker, “Modulation of neurodegeneration by molecular chaperones,” Nature Reviews Neuroscience, vol. 6, no. 1, pp. 11–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Narayanan, B. Kamps, W. C. Boelens, and B. Reif, “αB-crystallin competes with Alzheimer's disease β-amyloid peptide for peptide-peptide interactions and induces oxidation of Abeta-Met35,” FEBS Letters, vol. 580, no. 25, pp. 5941–5946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. J. Bajramovic, A. C. Plomp, A. Goes, et al., “Presentation of alpha B-crystallin to T cells in active multiple sclerosis lesions: an early event following inflammatory demyelination,” The Journal of Immunology, vol. 164, no. 8, pp. 4359–4366, 2000.
  31. C. S. Piao, S. W. Kim, J. B. Kim, and J. K. Lee, “Co-induction of αB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia,” Experimental Brain Research, vol. 163, no. 4, pp. 421–429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Hu and T. Li, “HspB5/αB-crystallin: properties and current progress in neuropathy,” Current Neurovascular Research, vol. 5, no. 2, pp. 143–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Bennardini, A. Wrzosek, and M. Chiesi, “αB-Crystallin in cardiac tissue: association with actin and desmin filaments,” Circulation Research, vol. 71, no. 2, pp. 288–294, 1992. View at Scopus
  34. R. B. Maccioni and V. Cambiazo, “Role of microtubule-associated proteins in the control of microtubule assembly,” Physiological Reviews, vol. 75, no. 4, pp. 835–864, 1995. View at Scopus
  35. D. F. Matesic and R. C. S. Lin, “Microtubule-associated protein 2 as an early indicator of ischemia- induced neurodegeneration in the gerbil forebrain,” Journal of Neurochemistry, vol. 63, no. 3, pp. 1012–1020, 1994. View at Scopus
  36. D. A. Dawson and J. M. Hallenbeck, “Acute focal ischemia-induced alterations in MAP2 immunostaining: description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 1, pp. 170–174, 1996. View at Scopus
  37. S. M. de Waegh, V. M. Y. Lee, and S. T. Brady, “Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells,” Cell, vol. 68, no. 3, pp. 451–463, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. S. T. Hsieh, G. J. Kidd, T. O. Crawford et al., “Regional modulation of neurofilament organization by myelination in normal axons,” Journal of Neuroscience, vol. 14, no. 11, pp. 6392–6401, 1994. View at Scopus
  39. J. M. Edgar, M. McLaughlin, D. Yool et al., “Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia,” Journal of Cell Biology, vol. 166, no. 1, pp. 121–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Whittaker, M. S. Glassy, N. Gude, M. A. Sussman, R. A. Gottlieb, and C. C. Glembotski, “Kinetics of the translocation and phosphorylation of αB-crystallin in mouse heart mitochondria during ex vivo ischemia,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 296, no. 5, pp. H1633–H1642, 2009. View at Publisher · View at Google Scholar · View at Scopus