About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 973927, 10 pages
http://dx.doi.org/10.1155/2012/973927
Research Article

Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance

1Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy
2Università Telematica S. Raffaele Roma, Via F. Daverio 7, 20122 Milan, Italy
3Istituto di Bioimmagini e di Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Via Fratelli Cervi 93, 20090 Segrate, Italy

Received 14 March 2012; Revised 6 June 2012; Accepted 7 June 2012

Academic Editor: Steve R. McAnulty

Copyright © 2012 Simona Mrakic-Sposta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Gille and H. Nohl, “The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation,” Archives of Biochemistry and Biophysics, vol. 388, no. 1, pp. 34–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Powers and M. J. Jackson, “Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production,” Physiological Reviews, vol. 88, no. 4, pp. 1243–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. E. Holley and K. H. Cheeseman, “Measuring free radical reactions in vivo,” British Medical Bulletin, vol. 49, no. 3, pp. 494–505, 1993. View at Scopus
  4. R. Kohen and A. Nyska, “Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification,” Toxicologic Pathology, vol. 30, no. 6, pp. 620–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. R. Buettner and B. A. Jurkiewicz, “Ascorbate free radical as a marker of oxidative stress: an EPR study,” Free Radical Biology and Medicine, vol. 14, no. 1, pp. 49–55, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. S. I. Dikalov, I. A. Kirilyuk, M. Voinov, and I. A. Grigor'Ev, “EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines,” Free Radical Research, vol. 45, no. 4, pp. 417–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Khan and H. Swartz, “Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy,” Molecular and Cellular Biochemistry, vol. 234-235, pp. 341–357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. A. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, “Free radicals and tissue damage produced by exercise,” Biochemical and Biophysical Research Communications, vol. 107, no. 4, pp. 1198–1205, 1982. View at Scopus
  9. L. L. Ji, “Antioxidants and oxidative stress in exercise,” Proceedings of the Society for Experimental Biology and Medicine, vol. 222, no. 3, pp. 283–292, 1999. View at Scopus
  10. D. M. Bailey, I. S. Young, J. McEneny et al., “Regulation of free radical outflow from an isolated muscle bed in exercising humans,” American Journal of Physiology, vol. 287, no. 4, pp. H1689–H1699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. Bailey, L. Lawrenson, J. McEneny et al., “Electron paramagnetic spectroscopic evidence of exercise-induced free radical accumulation in human skeletal muscle,” Free Radical Research, vol. 41, no. 2, pp. 182–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Gomez-Cabrera, E. Domenech, and J. Viña, “Moderate exercise is an antioxidant: upregulation of antioxidant genes by training,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Poljsak, “Strategies for reducing or preventing the generation of oxidative stress,” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 194586, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. ICH Harmonised Tripartite Guideline, “Validation on Analytical Procedures: Text and [Methodology],” Q2(R1), Step 4, 2005.
  15. S. Sachdev and K. J. A. Davies, “Production, detection, and adaptive responses to free radicals in exercise,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 215–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. Veskoukis, M. G. Nikolaidis, A. Kyparos, and D. Kouretas, “Blood reflects tissue oxidative stress depending on biomarker and tissue studied,” Free Radical Biology and Medicine, vol. 47, no. 10, pp. 1371–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Ginsburg, R. Kohen, and E. Koren, “Quantifying oxidant-scavenging ability of blood,” New England Journal of Medicine, vol. 364, no. 9, pp. 883–885, 2011. View at Scopus
  18. M. G. Nikolaidis and A. Z. Jamurtas, “Blood as a reactive species generator and redox status regulator during exercise,” Archives of Biochemistry and Biophysics, vol. 490, no. 2, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zielonka, H. Zhao, Y. Xu, and B. Kalyanaraman, “Mechanistic similarities between oxidation of hydroethidine by Fremy's salt and superoxide: stopped-flow optical and EPR studies,” Free Radical Biology and Medicine, vol. 39, no. 7, pp. 853–863, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Jackson, R. H. T. Edwards, and M. C. R. Symons, “Electron spin resonance studies of intact mammalian skeletal muscle,” Biochimica et Biophysica Acta, vol. 847, no. 2, pp. 185–190, 1985. View at Scopus
  21. R. S. Richardson, A. J. Donato, A. Uberoi et al., “Exercise-induced brachial artery vasodilation: role of free radicals,” American Journal of Physiology, vol. 292, no. 3, pp. H1516–H1522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. K. Sen, “Oxidants and antioxidants in exercise,” Journal of Applied Physiology, vol. 79, no. 3, pp. 675–686, 1995. View at Scopus
  23. R. R. Jenkins, “Free radical chemistry. Relationship to exercise,” Sports Medicine, vol. 5, no. 3, pp. 156–170, 1988. View at Scopus
  24. C. E. Cooper, N. B. Vollaard, T. Choueiri, and M. T. Wilson, “Exercise, free radicals and oxidative stress,” Biochemical Society Transactions, vol. 30, no. 2, pp. 280–285, 2002. View at Scopus
  25. L. M. A. Heunks, J. Viña, C. L. A. Van Herwaarden, H. T. M. Folgering, A. Gimeno, and P. N. R. Dekhuijzen, “Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease,” American Journal of Physiology, vol. 277, no. 6, pp. R1697–R1704, 1999. View at Scopus
  26. Y. Hellsten, “Xanthine dehydrogenase and purine metabolism in man. With special reference to exercise,” Acta Physiologica Scandinavica, Supplement, vol. 151, no. 621, pp. 1–73, 1994. View at Scopus
  27. M. Paolini, L. Valgimigli, E. Marchesi, S. Trespidi, and G. F. Pedulli, “Taking EPR “ Snapshots” of the oxidative stress status in human blood,” Free Radical Research, vol. 37, no. 5, pp. 503–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Bailey, I. S. Young, J. McEneny et al., “Regulation of free radical outflow from an isolated muscle bed in exercising humans,” American Journal of Physiology, vol. 287, no. 4, pp. H1689–H1699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Michailidis, A. Z. Jamurtas, M. G. Nikolaidis et al., “Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress,” Medicine and Science in Sports and Exercise, vol. 39, no. 7, pp. 1107–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. W. S. Waring, A. Convery, V. Mishra, A. Shenkin, D. J. Webb, and S. R. J. Maxwell, “Uric acid reduces exercise-induced oxidative stress in healthy adults,” Clinical Science, vol. 105, no. 4, pp. 425–430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. A. Watson, R. Callister, R. D. Taylor, D. W. Sibbritt, L. K. Macdonald-Wicks, and M. L. Garg, “Antioxidant restriction and oxidative stress in short-duration exhaustive exercise,” Medicine and Science in Sports and Exercise, vol. 37, no. 1, pp. 63–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K. S. Echtay, T. C. Esteves, J. L. Pakay et al., “A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling,” EMBO Journal, vol. 22, no. 16, pp. 4103–4110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. H. M. Alessio, A. E. Hagerman, B. K. Fulkerson, J. Ambrose, R. E. Rice, and R. L. Wiley, “Generation of reactive oxygen species after exhaustive aerobic and isometric exercise,” Medicine and Science in Sports and Exercise, vol. 32, no. 9, pp. 1576–1581, 2000. View at Scopus
  34. R. J. Bloomer, P. G. Davis, L. A. Consitt, and L. Wideman, “Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women,” International Journal of Sports Medicine, vol. 28, no. 1, pp. 21–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. J. Bloomer, A. H. Goldfarb, and M. J. McKenzie, “Oxidative stress response to aerobic exercise: comparison of antioxidant supplements,” Medicine and Science in Sports and Exercise, vol. 38, no. 6, pp. 1098–1105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Groussard, F. Rannou-Bekono, G. Machefer et al., “Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise,” European Journal of Applied Physiology, vol. 89, no. 1, pp. 14–20, 2003. View at Scopus
  37. R. R. Jenkins, “Exercise and oxidative stress methodology: a critique,” American Journal of Clinical Nutrition, vol. 72, no. 2, supplement, pp. 670S–674S, 2000. View at Scopus
  38. N. B. J. Vollaard, J. P. Shearman, and C. E. Cooper, “Exercise-induced oxidative stress: myths, realities and physiological relevance,” Sports Medicine, vol. 35, no. 12, pp. 1045–1062, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. J. Suzuki, M. Tsuchiya, and L. Packer, “Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species,” Free Radical Research Communications, vol. 15, no. 5, pp. 255–263, 1991. View at Scopus
  40. V. E. Kagan, A. Shvedova, E. Serbinova et al., “Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals,” Biochemical Pharmacology, vol. 44, no. 8, pp. 1637–1649, 1992. View at Publisher · View at Google Scholar · View at Scopus
  41. B. C. Scott, O. I. Aruoma, P. J. Evansi et al., “Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation,” Free Radical Research, vol. 20, no. 2, pp. 119–133, 1994. View at Scopus
  42. E. Busse, G. Zimmer, B. Schopohl, and B. Kornhuber, “Influence of α-lipoic acid on intracellular glutathione in vitro and in vivo,” Arzneimittel-Forschung, vol. 42, no. 6, pp. 829–831, 1992. View at Scopus
  43. R. Sumathi, V. K. Devi, and P. Varalakshmi, “DL α-lipoic acid protection against cadmium-induced tissue lipid peroxidation,” Medical Science Research, vol. 22, no. 1, pp. 23–25, 1994. View at Scopus
  44. T. A. Seaton, P. Jenner, and C. D. Marsden, “The isomers of thioctic acid alter 14C-Deoxyglucose incorporation in rat basal ganglia,” Biochemical Pharmacology, vol. 51, no. 7, pp. 983–986, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Yoshihara, N. Fujiwara, and K. Suzuki, “Antioxidants: benefits and risks for long-term health,” Maturitas, vol. 67, no. 2, pp. 103–107, 2010. View at Publisher · View at Google Scholar · View at Scopus