About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 186795, 16 pages
http://dx.doi.org/10.1155/2013/186795
Research Article

Adaptive Redox Response of Mesenchymal Stromal Cells to Stimulation with Lipopolysaccharide Inflammagen: Mechanisms of Remodeling of Tissue Barriers in Sepsis

1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
2Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
3Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
4Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

Received 23 December 2012; Revised 8 March 2013; Accepted 11 March 2013

Academic Editor: Sumitra Miriyala

Copyright © 2013 Nikolai V. Gorbunov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky, “Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care,” Critical Care Medicine, vol. 29, no. 7, pp. 1303–1310, 2001. View at Scopus
  2. J. A. Russell, “Management of sepsis,” The New England Journal of Medicine, vol. 355, no. 16, pp. 1699–1713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. G. Kiang, W. Jiao, L. H. Cary et al., “Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection,” Radiation Research, vol. 173, no. 3, pp. 319–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. G. Kiang, B. R. Garrison, and N. V. Gorbunov, “Radiation combined injury: DNA damage, apoptosis, and autophagy,” Adaptive Medical, vol. 2, pp. 1–10, 2010.
  5. M. Perl, C. S. Chung, R. Swan, and A. Ayala, “Role of programmed cell death in the immunopathogenesis of sepsis,” Drug Discovery Today, vol. 4, no. 4, pp. 223–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. H. Krebsbach, S. A. Kuznetsov, P. Bianco, and P. Gehron Robey, “Bone marrow stromal cells: characterization and clinical application,” Critical Reviews in Oral Biology and Medicine, vol. 10, no. 2, pp. 165–181, 1999. View at Scopus
  7. A. Friedenstein, “Stromal-hematopoietic interrelationships: Maximov's ideas and modern models,” Haematology and Blood Transfusion, vol. 32, pp. 159–167, 1989.
  8. D. W. Powell, I. V. Pinchuk, J. I. Saada, X. Chen, and R. C. Mifflin, “Mesenchymal cells of the intestinal lamina propria,” Annual Review of Physiology, vol. 73, pp. 213–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. W. M. Jackson, P. G. Alexander, J. D. Bulken-Hoover et al., “Mesenchymal progenitor cells derived from traumatized muscle enhance neurite growth,” Journal of Tissue Engineering and Regenerative Medicine, 2012. View at Publisher · View at Google Scholar
  10. A. Krasnodembskaya, Y. Song, X. Fang et al., “Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37,” Stem Cells, vol. 28, no. 12, pp. 2229–2238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. V. Gorbunov, B. R. Garrison, M. Zhai et al., “Autophagy-mediated defense response of mouse mesenchymal stromal cells (MSCs) to challenge with Escherichia coli,” in Protein Interaction, J. Cai, Ed., pp. 23–44.
  12. K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of Internal Medicine, vol. 262, no. 5, pp. 509–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Lee, X. Fang, N. Gupta, V. Serikov, and M. A. Matthay, “Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16357–16362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Nemeth, B. Mayer, and E. Mezey, “Modulation of bone marrow stromal cell functions in infectious diseases by toll-like receptor ligands,” Journal of Molecular Medicine, vol. 88, no. 1, pp. 5–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Kobayashi, M. Chamaillard, Y. Ogura et al., “Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract,” Science, vol. 307, no. 5710, pp. 731–734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Imai, K. Kuba, G. G. Neely et al., “Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury,” Cell, vol. 133, no. 2, pp. 235–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Gill, A. Tsung, and T. Billiar, “Linking oxidative stress to inflammation: toll-like receptors,” Free Radical Biology and Medicine, vol. 48, no. 9, pp. 1121–1132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Lecat, J. Piette, and S. Legrand-Poels, “The protein Nod2: an innate receptor more complex than previously assumed,” Biochemical Pharmacology, vol. 80, no. 12, pp. 2021–2031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Sebban and G. Courtois, “NF-κB and inflammation in genetic disease,” Biochemical Pharmacology, vol. 72, no. 9, pp. 1153–1160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Thimmulappa, H. Lee, T. Rangasamy et al., “Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis,” Journal of Clinical Investigation, vol. 116, no. 4, pp. 984–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Murrow and J. Debnath, “Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease,” Annual Review of Pathology, vol. 2012, 2012. View at Publisher · View at Google Scholar
  22. M. Delgado, S. Singh, S. De Haro et al., “Autophagy and pattern recognition receptors in innate immunity,” Immunological Reviews, vol. 227, no. 1, pp. 189–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Brigelius-Flohé and L. Flohé, “Basic principles and emerging concepts in the redox control of transcription factors,” Antioxidants & Redox Signaling, vol. 15, no. 8, pp. 2335–2381, 2011. View at Publisher · View at Google Scholar
  24. T. Nguyen, P. Nioi, and C. B. Pickett, “The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13291–13295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Yuan, C. N. Perry, C. Huang et al., “LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection,” American Journal of Physiology, vol. 296, no. 2, pp. H470–H479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. R. Crisostomo, Y. Wang, T. A. Markel, M. Wang, T. Lahm, and D. R. Meldrum, “Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism,” American Journal of Physiology, vol. 294, no. 3, pp. C675–C682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Jin, A. Tanaka, A. M. Choi, and S. W. Ryter, “Autophagic proteins: new facets of the oxygen paradox,” Autophagy, vol. 8, no. 3, pp. 426–428, 2012.
  28. S. S. Iyer, E. Torres-Gonzalez, D. C. Neujahr et al., “Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice,” Stem Cells International, vol. 2010, Article ID 868076, 2010. View at Publisher · View at Google Scholar
  29. M. Owen and A. J. Friedenstein, “Stromal stem cells: marrow-derived osteogenic precursors.,” Ciba Foundation Symposium, vol. 136, pp. 42–60, 1988. View at Scopus
  30. J. J. Zhang, Z. M. Xu, C. M. Zhang et al., “Pyrrolidine dithiocarbamate inhibits nuclear factor-κB pathway activation, and regulates adhesion, migration, invasion and apoptosis of endometriotic stromal cells,” Molecular Human Reproduction, vol. 17, no. 3, Article ID gaq090, pp. 175–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. W. C. Burhans and N. H. Heintz, “The cell cycle is a redox cycle: linking phase-specific targets to cell fate,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1282–1293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Sengupta, J. D. Molkentin, J. H. Paik, R. A. DePinho, and K. E. Yutzey, “FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress,” Journal of Biological Chemistry, vol. 286, no. 9, pp. 7468–7478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Maher and M. Yamamoto, “The rise of antioxidant signaling—the evolution and hormetic actions of Nrf2,” Toxicology and Applied Pharmacology, vol. 244, no. 1, pp. 4–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. M. Go, D. M. Duong, J. Peng, and D. P. Jones, “Protein cysteines map to functional networks according to steady-state level of oxidation,” Journal of Proteomics & Bioinformatics, vol. 4, no. 10, pp. 196–209, 2011.
  35. V. Calabrese, C. Cornelius, A. T. Dinkova-Kostova et al., “Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity,” Biochimica et Biophysica Acta, vol. 1822, no. 5, pp. 753–783, 2012. View at Publisher · View at Google Scholar
  36. L. J. Martin, “Biology of mitochondria in neurodegenerative diseases,” Progress in Molecular Biology and Translational Science, vol. 107, pp. 355–415, 2012. View at Publisher · View at Google Scholar
  37. J. Lee, S. Giordano, and J. Zhang, “Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling,” Biochemical Journal, vol. 441, no. 2, pp. 523–540, 2012. View at Publisher · View at Google Scholar
  38. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. C. Um, J. H. Jang, D. H. Kim, C. Lee, and Y. J. Surh, “Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells,” Nitric Oxide, vol. 25, no. 2, pp. 161–168, 2011. View at Publisher · View at Google Scholar
  40. A. Maruyama, K. Nishikawa, Y. Kawatani et al., “The novel Nrf2-interacting factor KAP1 regulates susceptibility to oxidative stress by promoting the Nrf2-mediated cytoprotective response,” Biochemical Journal, vol. 436, no. 2, pp. 387–397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. N. V. Gorbunov, J. E. Morris, J. S. Greenberger, and B. D. Thrall, “Establishment of a novel clonal murine bone marrow stromal cell line for assessment of p53 responses to genotoxic stress,” Toxicology, vol. 179, no. 3, pp. 257–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. E. R. Tosi, V. Bocanegra, W. Manucha, A. G. Lorenzo, and P. G. Vallés, “The Nrf2-Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO),” Cell Stress and Chaperones, vol. 16, no. 1, pp. 57–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. I. Fujita, D. Maeda, Q. Xiao, and S. M. Srinivasula, “Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1427–1432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Yang and D. J. Klionsky, “Mammalian autophagy: core molecular machinery and signaling regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Reggiori, M. Komatsu, K. Finley, and A. Simonsen, “Selective types of autophagy,” International Journal of Cell Biology, vol. 2012, Article ID 156272, 2 pages, 2012. View at Publisher · View at Google Scholar
  46. D. A. Kubli and A. B. Gustafsson, “Mitochondria and mitophagy: the yin and yang of cell death control,” Circulation Research, vol. 111, no. 9, pp. 1208–1221, 2012. View at Publisher · View at Google Scholar
  47. V. E. Kagan, B. W. Day, N. M. Elsayed, and N. V. Gorbunov, “Dynamics of haemoglobin,” Nature, vol. 383, no. 6595, pp. 30–31, 1996. View at Scopus
  48. M. Keel and O. Trentz, “Pathophysiology of polytrauma,” Injury, vol. 36, no. 6, pp. 691–709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. J. G. Kiang, R. Fukumoto, and N. V. Gorbunov, “Lipid peroxidation after ionizing irradiation leads to apoptosis and autophagy,” in Lipid Peroxidation, A. Catala, Ed., pp. 261–278, Rijeka, Croatia, 2012.
  50. D. Kültz, “Molecular and evolutionary basis of the cellular stress response,” Annual Review of Physiology, vol. 67, pp. 225–257, 2005. View at Publisher · View at Google Scholar
  51. C. A. Piantadosi, “Carbon monoxide, reactive oxygen signaling, and oxidative stress,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 562–569, 2008. View at Publisher · View at Google Scholar · View at Scopus