About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 297512, 12 pages
http://dx.doi.org/10.1155/2013/297512
Review Article

Triggers and Effectors of Oxidative Stress at Blood-Brain Barrier Level: Relevance for Brain Ageing and Neurodegeneration

1Laboratory of Molecular Medicine, “Victor Babeş” National Institute of Pathology, 99-101 Splaiul Independenţei, 050096 Bucharest, Romania
2Department of Cellular and Molecular Medicine, School of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari, 050474 Bucharest, Romania
3Department of Neurology, Colentina Clinical Hospital (CDPC), School of Medicine, “Carol Davila” University of Medicine and Pharmacy, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania

Received 14 December 2012; Revised 27 January 2013; Accepted 31 January 2013

Academic Editor: Emilio Luiz Streck

Copyright © 2013 Ana-Maria Enciu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Ceballos-Picot, M. Merad-Boudia, A. Nicole et al., “Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer's type—place of the extracellular glutathione peroxidase,” Free Radical Biology and Medicine, vol. 20, no. 4, pp. 579–587, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. De la Monte, T. R. Neely, J. Cannon, and J. R. Wands, “Oxidative stress and hypoxia-like injury cause Alzheimer-type molecular abnormalities in central nervous system neurons,” Cellular and Molecular Life Sciences, vol. 57, no. 10, pp. 1471–1481, 2000. View at Scopus
  3. A. Gella and N. Durany, “Oxidative stress in Alzheimer disease,” Cell Adhesion and Migration, vol. 3, no. 1, pp. 88–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. V. Zlokovic, “Neurovascular mechanisms of Alzheimer's neurodegeneration,” Trends in Neurosciences, vol. 28, no. 4, pp. 202–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. O. Popescu, E. C. Toescu, L. M. Popescu et al., “Blood-brain barrier alterations in ageing and dementia,” Journal of the Neurological Sciences, vol. 283, pp. 99–106, 2009.
  6. H. C. Bauer, A. Traweger, J. Zweimueller-Mayer, et al., “New aspects of the molecular constituents of tissue barriers,” Journal of Neural Transmission, vol. 118, pp. 7–21, 2011.
  7. J. Bednarczyk and K. Lukasiuk, “Tight junctions in neurological diseases,” Acta Neurobiologiae Experimentalis, vol. 71, pp. 393–408, 2011.
  8. R. D. Bell, E. A. Winkler, A. P. Sagare et al., “Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging,” Neuron, vol. 68, no. 3, pp. 409–427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Nakagawa, M. A. Deli, H. Kawaguchi, et al., “A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes,” Neurochemistry International, vol. 54, no. 3-4, pp. 253–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Liebner, C. J. Czupalla, and H. Wolburg, “Current concepts of blood-brain barrier development,” International Journal of Developmental Biology, vol. 55, pp. 467–476, 2011.
  11. N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood-brain barrier,” Neurobiology of Disease, vol. 37, no. 1, pp. 13–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Correale and A. Villa, “Cellular elements of the blood-brain barrier,” Neurochemical Research, vol. 34, no. 12, pp. 2067–2077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. C. Janzer and M. C. Raff, “Astrocytes induce blood-brain barrier properties in endothelial cells,” Nature, vol. 325, no. 6101, pp. 253–257, 1987. View at Scopus
  14. Y. Hayashi, M. Nomura, S. Yamagishi, S. Harada, J. Yamashita, and H. Yamamoto, “Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes,” Glia, vol. 19, pp. 13–26, 1997.
  15. B. V. Zlokovic, “Neurodegeneration and the neurovascular unit,” Nature Medicine, vol. 16, no. 12, pp. 1370–1371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. W. Vorbrodt and D. H. Dobrogowska, “Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view,” Brain Research Reviews, vol. 42, no. 3, pp. 221–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. R. Weber, “Dynamic properties of the tight junction barrier,” Annals of the New York Academy of Sciences, vol. 1257, pp. 77–84, 2012.
  18. S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, “Brain endothelial cell-cell junctions: how to “open” the blood brain barrier,” Current Neuropharmacology, vol. 6, no. 3, pp. 179–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Nasdala, K. Wolburg-Buchholz, H. Wolburg et al., “A transmembrane tight junction protein selectively expressed on endothelial cells and platelets,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 16294–16303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. O. C. Colgan, N. T. Collins, G. Ferguson et al., “Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function,” Brain Research, vol. 1193, pp. 84–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Brown, K. S. Mark, R. D. Egleton, J. D. Huber, A. R. Burroughs, and T. P. Davis, “Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction proteins and NFκB,” Journal of Cell Science, vol. 116, no. 4, pp. 693–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. El Assar, J. Angulo, S. Vallejo, C. Peiro, C. F. Sanchez-Ferrer, and L. Rodriguez-Manas, “Mechanisms involved in the aging-induced vascular dysfunction,” Frontiers in Physiology, vol. 3, article 132, 2012.
  23. W. G. Mayhan, F. M. Faraci, G. L. Baumbach, and D. D. Heistad, “Effects of aging on responses of cerebral arterioles,” American Journal of Physiology, vol. 258, no. 4, pp. H1138–H1143, 1990. View at Scopus
  24. R. L. Matz, M. A. De Sotomayor, C. Schott, J. C. Stoclet, and R. Andriantsitohaina, “Vascular bed heterogeneity in age-related endothelial dysfunction with respect to NO and eicosanoids,” British Journal of Pharmacology, vol. 131, no. 2, pp. 303–311, 2000. View at Scopus
  25. L. Rodríguez-Mañas, M. El-Assar, S. Vallejo et al., “Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation,” Aging Cell, vol. 8, no. 3, pp. 226–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. W. G. Mayhan, D. M. Arrick, G. M. Sharpe, and H. Sun, “Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress,” Microcirculation, vol. 15, no. 3, pp. 225–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Pacher, J. G. Mabley, F. G. Soriano, L. Liaudet, and C. Szabó, “Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation,” British Journal of Pharmacology, vol. 135, pp. 1347–1350, 2002.
  28. A. J. Donato, I. Eskurza, A. E. Silver et al., “Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB,” Circulation Research, vol. 100, no. 11, pp. 1659–1666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Lee, J. Kim, R. Williams et al., “Effects of aging on blood brain barrier and matrix metalloproteases following controlled cortical impact in mice,” Experimental Neurology, vol. 234, no. 1, pp. 50–61, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. A. D. Mooradian, M. J. Haas, and J. M. Chehade, “Age-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1),” Mechanisms of Ageing and Development, vol. 124, no. 2, pp. 143–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. K. E. Sandoval and K. A. Witt, “Age and 17β-estradiol effects on blood-brain barrier tight junction and estrogen receptor proteins in ovariectomized rats,” Microvascular Research, vol. 81, no. 2, pp. 198–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. W. Blau, T. R. Cowley, J. O'Sullivan et al., “The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability,” Neurobiology of Aging, vol. 33, no. 5, pp. 1005.e23–1005.e35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Timaru-Kast, C. Luh, P. Gotthardt, et al., “Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice,” PLoS ONE, vol. 7, Article ID e43829, 2012.
  34. L. T. Grinberg and D. R. Thal, “Vascular pathology in the aged human brain,” Acta Neuropathologica, vol. 119, no. 3, pp. 277–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. B. T. Hawkins and R. D. Egleton, “Pathophysiology of the blood-brain barrier: animal models and methods,” Current Topics in Developmental Biology, vol. 80, pp. 277–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bake, J. A. Friedman, and F. Sohrabji, “Reproductive age-related changes in the blood brain barrier: expression of IgG and tight junction proteins,” Microvascular Research, vol. 78, no. 3, pp. 413–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ueno, H. Sakamoto, K. Kanenishi, M. Onodera, I. Akiguchi, and M. Hosokawa, “Ultrastructural and permeability features of microvessels in the hippocampus, cerebellum and pons of senescence-accelerated mice (SAM),” Neurobiology of Aging, vol. 22, no. 3, pp. 469–478, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Simpson, S. B. Wharton, J. Cooper, et al., “Alterations of the blood-brain barrier in cerebral white matter lesions in the ageing brain,” Neuroscience Letters, vol. 486, pp. 246–251, 2010.
  39. A. P. Viggars, S. B. Wharton, J. E. Simpson et al., “Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: a study in the MRC-CFAS population neuropathology cohort,” Neuroscience Letters, vol. 505, no. 1, pp. 25–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Li and R. M. Jackson, “Reactive species mechanisms of cellular hypoxia-reoxygenation injury,” American Journal of Physiology, vol. 282, no. 2, pp. C227–C241, 2002. View at Scopus
  41. L. Krizanac-Bengez, M. Hossain, V. Fazio, M. Mayberg, and D. Janigro, “Loss of flow induces leukocyte-mediated MMP/TIMP imbalance in dynamic in vitro blood-brain barrier model: role of pro-inflammatory cytokines,” American Journal of Physiology, vol. 291, no. 4, pp. C740–C749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Chen, R. Hartman, R. Ayer et al., “Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain,” Journal of Neurochemistry, vol. 111, no. 3, pp. 726–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Fischer, M. Clauss, M. Wiesnet, D. Renz, W. Schafer, and G. F. Karliczek, “Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO,” American Journal of Physiology, vol. 276, no. 4, pp. C812–C820, 1999. View at Scopus
  44. K. A. Witt, K. S. Mark, K. E. Sandoval, and T. P. Davis, “Reoxygenation stress on blood-brain barrier paracellular permeability and edema in the rat,” Microvascular Research, vol. 75, no. 1, pp. 91–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Zhao, Q. Zhang, Y. Xue, X. Chen, and R. S. Haun, “Effects of hyperbaric oxygen on the expression of claudins after cerebral ischemia-reperfusion in rats,” Experimental Brain Research, vol. 212, no. 1, pp. 109–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Jiao, Z. Wang, Y. Liu, P. Wang, and Y. Xue, “Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult,” Journal of Molecular Neuroscience, vol. 44, no. 2, pp. 130–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D. R. Pillai, M. S. Dittmar, D. Baldaranov et al., “Cerebral ischemia-reperfusion injury in rats—a 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 11, pp. 1846–1855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Neumann-Haefelin, A. Kastrup, A. De Crespigny, et al., “Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation,” Stroke, vol. 31, no. 8, pp. 1965–1973, 2000. View at Scopus
  49. J. J. Lochhead, G. McCaffrey, C. E. Quigley et al., “Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, pp. 1625–1636, 2010.
  50. G. McCaffrey, C. L. Willis, W. D. Staatz et al., “Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress,” Journal of Neurochemistry, vol. 110, no. 1, pp. 58–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. A. Witt, K. S. Mark, S. Hom, and T. P. Davis, “Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression,” American Journal of Physiology, vol. 285, no. 6, pp. H2820–H2831, 2003. View at Scopus
  52. S. Amor, F. Puentes, D. Baker, and P. Van Der Valk, “Inflammation in neurodegenerative diseases,” Immunology, vol. 129, no. 2, pp. 154–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Vila, J. Castillo, A. Dávalos, and A. Chamorro, “Proinflammatory cytokines and early neurological worsening in ischemic stroke,” Stroke, vol. 31, no. 10, pp. 2325–2329, 2000. View at Scopus
  54. P. Welsh, G. D. O. Lowe, J. Chalmers et al., “Associations of proinflammatory cytokines with the risk of recurrent stroke,” Stroke, vol. 39, no. 8, pp. 2226–2230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Tuttolomondo, D. Di Raimondo, R. di Sciacca, A. Pinto, and G. Licata, “Inflammatory cytokines in acute ischemic stroke,” Current Pharmaceutical Design, vol. 14, pp. 3574–3589, 2008.
  56. G. Ravaglia, P. Forti, F. Maioli et al., “Blood inflammatory markers and risk of dementia. The Conselice Study of Brain Aging,” Neurobiology of Aging, vol. 28, no. 12, pp. 1810–1820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Di Napoli and I. M. Shah, “Neuroinflammation and cerebrovascular disease in old age: a translational medicine perspective,” Journal of Aging Research, vol. 2011, Article ID 857484, 18 pages, 2011. View at Publisher · View at Google Scholar
  58. S. Ray, M. Britschgi, C. Herbert , et al., “Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins,” Nature Medicine, vol. 13, pp. 1359–1362, 2007.
  59. M. G. Ravetti and P. Moscato, “Identification of a 5-protein biomarker molecular signature for predicting Alzheimer's disease,” PLoS ONE, vol. 3, no. 9, Article ID e3111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. E. L. Tobinick and H. Gross, “Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer's disease,” BMC Neurology, vol. 8, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Tobinick, “Perispinal etanercept produces rapid improvement in primary progressive aphasia: identification of a novel, rapidly reversible TNF-mediated pathophysiologic mechanism,” Medscape General Medicine, vol. 10, no. 6, article 135, 2008. View at Scopus
  62. D. M. Patrick, A. K. Leone, J. J. Shellenberger, K. A. Dudowicz, and J. M. King, “Proinflammatory cytokines tumor necrosis factor-α and interferon-γ modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling,” BMC Physiology, vol. 6, article 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Amasheh, I. Grotjohann, S. Amasheh et al., “Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: a novel model for studying the pathomechanisms of inflammatory bowel disease cytokines,” Scandinavian Journal of Gastroenterology, vol. 44, no. 10, pp. 1226–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Ewert, S. Aguilera, C. Alliende et al., “Disruption of tight junction structure in salivary glands from Sjogren's syndrome patients is linked to proinflammatory cytokine exposure,” Arthritis and Rheumatism, vol. 62, no. 5, pp. 1280–1289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. C. T. Capaldo and A. Nusrat, “Cytokine regulation of tight junctions,” Biochimica et Biophysica Acta, vol. 1788, no. 4, pp. 864–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Scharl, G. Paul, K. E. Barrett, and D. F. McCole, “AMP-activated protein kinase mediates the interferon-γ-induced decrease in intestinal epithelial barrier function,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 27952–27963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. O. B. Dimitrijevic, S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, “Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 6, pp. 797–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. D. Huber, K. A. Witt, S. Hom, R. D. Egleton, K. S. Mark, and T. P. Davis, “Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression,” American Journal of Physiology, vol. 280, no. 3, pp. H1241–H1248, 2001. View at Scopus
  69. T. A. Brooks, B. T. Hawkins, J. D. Huber, R. D. Egleton, and T. P. Davis, “Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alterations,” American Journal of Physiology, vol. 289, no. 2, pp. H738–H743, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Izikson, R. S. Klein, I. F. Charo, H. L. Weiner, and A. D. Luster, “Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1075–1080, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. D. W. Holman, R. S. Klein, and R. M. Ransohoff, “The blood-brain barrier, chemokines and multiple sclerosis,” Biochim Biophys Acta, vol. 1812, pp. 220–230, 2011.
  72. M. Krumbholz, D. Theil, F. Steinmeyer, et al., “CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions,” Journal of Neuroimmunology, vol. 190, no. 1-2, pp. 72–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Errede, F. Girolamo, G. Ferrara, et al., “Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis,” Journal of Neuropathology and Experimental Neurology, vol. 71, pp. 840–854, 2012.
  74. H. Wolburg, K. Wolburg-Buchholz, J. Kraus et al., “Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme,” Acta Neuropathologica, vol. 105, no. 6, pp. 586–592, 2003. View at Scopus
  75. F. Pfeiffer, J. Schäfer, R. Lyck et al., “Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis,” Acta Neuropathologica, vol. 122, no. 5, pp. 601–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Merlini, E. P. Meyer, A. Ulmann-Schuler, and R. M. Nitsch, “Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice,” Acta Neuropathologica, vol. 122, no. 3, pp. 293–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. C. A. Hawkes, W. Härtig, J. Kacza et al., “Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy,” Acta Neuropathologica, vol. 121, no. 4, pp. 431–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. S. Hartz, B. Bauer, E. L. B. Soldner et al., “Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy,” Stroke, vol. 43, no. 2, pp. 514–523, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. M. W. Marlatt, P. J. Lucassen, G. Perry, M. A. Smith, and X. Zhu, “Alzheimer's disease: cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies,” Journal of Alzheimer's Disease, vol. 15, no. 2, pp. 199–210, 2008. View at Scopus
  80. C. A. Massaad, “Neuronal and vascular oxidative stress in Alzheimer's disease,” Current Neuropharmacology, vol. 9, no. 4, pp. 662–673, 2011. View at Scopus
  81. H. V. Vinters, “Cerebral amyloid angiopathy. A critical review,” Stroke, vol. 18, no. 2, pp. 311–324, 1987. View at Scopus
  82. A. Carrano, J. J. M. Hoozemans, S. M. Van Der Vies, A. J. M. Rozemuller, J. Van Horssen, and H. E. De Vries, “Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy,” Antioxidants and Redox Signaling, vol. 15, no. 5, pp. 1167–1178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Askarova, X. Yang, W. Sheng, G. Y. Sun, and J. C. Lee, “Role of Aβ-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A2 activation in astrocytes and cerebral endothelial cells,” Neuroscience, vol. 199, pp. 375–385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. K. E. Biron, D. L. Dickstein, R. Gopaul, and W. A. Jefferies, “Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in alzheimer's disease,” PLoS ONE, vol. 6, no. 8, Article ID e23789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. L. M. Tai, K. A. Holloway, D. K. Male, A. J. Loughlin, and I. A. Romero, “Amyloid-β-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation,” Journal of Cellular and Molecular Medicine, vol. 14, no. 5, pp. 1101–1112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Y. Kook, H. S. Hong, M. Moon, C. M. Ha, and S. Chang, “Aβ142-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling,” Journal of Neuroscience, vol. 32, pp. 8845–8854, 2012.
  87. D. Ehrlich, M. Pirchl, and C. Humpel, “Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats,” Neuroscience, vol. 205, pp. 154–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Sun, H. Zheng, E. Molacek, Q. Fang, K. P. Patel, and W. G. Mayhan, “Role of NAD(P)H oxidase in alcohol-induced impairment of endothelial nitric oxide synthase-dependent dilation of cerebral arterioles,” Stroke, vol. 37, no. 2, pp. 495–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Y. Sun and G. Y. Sun, “Ethanol and oxidative mechanisms in the brain,” Journal of Biomedical Science, vol. 8, no. 1, pp. 37–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. P. M. A. Muneer, S. Alikunju, A. M. Szlachetka, and J. Haorah, “The mechanisms of cerebral vascular dysfunction and neuroinflammation by MMP-mediated degradation of VEGFR-2 in alcohol ingestion,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 5, pp. 1167–1177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Haorah, B. Knipe, J. Leibhart, A. Ghorpade, and Y. Persidsky, “Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction,” Journal of Leukocyte Biology, vol. 78, no. 6, pp. 1223–1232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Haorah, D. Heilman, B. Knipe et al., “Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise,” Alcoholism, vol. 29, no. 6, pp. 999–1009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Zhang, Q. Li, W. Guo, Y. Huang, and J. Yang, “Effects of chronic ethanol ingestion on tight junction proteins and barrier function of alveolar epithelium in the rat,” Shock, vol. 28, no. 2, pp. 245–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. B. M. Rotoli, G. Orlandini, S. Guizzardi, et al., “Ethanol increases the paracellular permeability of monolayers of CAPAN-1 pancreatic duct cells,” Journal of Molecular Histology, vol. 35, no. 4, pp. 355–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Elamin, D. Jonkers, K. Juuti-Uusitalo et al., “Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model,” PLoS ONE, vol. 7, no. 4, Article ID e35008, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. C. S. Atwood, G. Perry, H. Zeng et al., “Copper mediates dityrosine cross-linking of Alzheimer's amyloid-β,” Biochemistry, vol. 43, no. 2, pp. 560–568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Chen, C. Lin, L. J. Druhan, T. Wang, Y. Chen, and J. L. Zweier, “Superoxide induces endothelial nitric-oxide synthase protein thiyl radical formation, a novel mechanism regulating eNOS function and coupling,” Journal of Biological Chemistry, vol. 286, no. 33, pp. 29098–29107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Chrissobolis and F. M. Faraci, “The role of oxidative stress and NADPH oxidase in cerebrovascular disease,” Trends in Molecular Medicine, vol. 14, no. 11, pp. 495–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. F. M. Faraci, “Hydrogen peroxide: watery fuel for change in vascular biology,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 1931–1933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Schreibelt, R. J. P. Musters, A. Reijerkerk et al., “Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity,” Journal of Immunology, vol. 177, no. 4, pp. 2630–2637, 2006. View at Scopus
  101. J. Haorah, S. H. Ramirez, K. Schall, D. Smith, R. Pandya, and Y. Persidsky, “Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction,” Journal of Neurochemistry, vol. 101, no. 2, pp. 566–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Lee, K. Namkoong, D. Kim et al., “Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells,” Microvascular Research, vol. 68, no. 3, pp. 231–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Schreibelt, G. Kooij, A. Reijerkerk et al., “Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling,” FASEB Journal, vol. 21, no. 13, pp. 3666–3676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Angeles Muñoz-Fernández and M. Fresno, “The role of tumour necrosis factor, interleukin 6, interferon-γ and inducible nitric oxide synthase in the development and pathology of the nervous system,” Progress in Neurobiology, vol. 56, no. 3, pp. 307–340, 1998. View at Publisher · View at Google Scholar · View at Scopus
  105. D. M. Wilcock, M. R. Lewis, W. E. Van Nostrand et al., “Progression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2,” Journal of Neuroscience, vol. 28, no. 7, pp. 1537–1545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. J. L. Eliasson, Z. Huang, R. J. Ferrante et al., “Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage,” Journal of Neuroscience, vol. 19, no. 14, pp. 5910–5918, 1999. View at Scopus
  107. L. M. Bevers, B. Braam, J. A. Post et al., “Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase,” Hypertension, vol. 47, no. 1, pp. 87–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. D. I. Utepbergenov, K. Mertsch, A. Sporbert et al., “Nitric oxide protects blood-brain barrier in vitro from hypoxia/reoxygenation-mediated injury,” FEBS Letters, vol. 424, no. 3, pp. 197–201, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Skoumalova and J. Hort, “Blood markers of oxidative stress in Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 16, pp. 2291–2300, 2012.
  111. A. Skoumalova, P. Madlova, and E. Topinkova, “End products of lipid peroxidation in erythrocyte membranes in Alzheimer's disease,” Cell Biochemistry and Function, vol. 30, pp. 205–210, 2012.
  112. J. Wang, L. Sun, Y. F. Si, and B. M. Li, “Overexpression of actin-depolymerizing factor blocks oxidized low-density lipoprotein-induced mouse brain microvascular endothelial cell barrier dysfunction,” Molecular and Cellular Biochemistry, vol. 371, pp. 1–8, 2012.
  113. K. Mertsch, I. Blasig, and T. Grune, “4-Hydroxynonenal impairs the permeability of an in vitro rat blood-brain barrier,” Neuroscience Letters, vol. 314, no. 3, pp. 135–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Elali, T. R. Doeppner, A. Zechariah, and D. M. Hermann, “Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and rhoa overactivation,” Stroke, vol. 42, no. 11, pp. 3238–3244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Montaner, J. Alvarez-Sabín, C. Molina et al., “Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment,” Stroke, vol. 32, no. 8, pp. 1759–1766, 2001. View at Scopus
  116. M. Asahi, X. Wang, T. Mori et al., “Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia,” Journal of Neuroscience, vol. 21, no. 19, pp. 7724–7732, 2001. View at Scopus
  117. G. A. Rosenberg, M. Kornfeld, E. Estrada, R. O. Kelley, L. A. Liotta, and W. G. Stetler-Stevenson, “TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase,” Brain Research, vol. 576, no. 2, pp. 203–207, 1992. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Liu, X. Jin, K. J. Liu, and W. Liu, “Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage,” Journal of Neuroscience, vol. 32, no. 9, pp. 3044–3057, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. A. T. Bauer, H. F. Bürgers, T. Rabie, and H. H. Marti, “Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 4, pp. 837–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Saitou, M. Furuse, H. Sasaki, et al., “Complex phenotype of mice lacking occludin, a component of tight junction strands,” Molecular Biology of the Cell, vol. 11, no. 12, pp. 4131–4142, 2000. View at Scopus
  121. M. Saitou, K. Fujimoto, Y. Doi et al., “Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions,” Journal of Cell Biology, vol. 141, no. 2, pp. 397–408, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. J. D. Schulzke, A. H. Gitter, J. Mankertz, et al., “Epithelial transport and barrier function in occludin-deficient mice,” Biochimica et Biophysica Acta, vol. 1669, no. 1, pp. 34–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Krause, L. Winkler, S. L. Mueller, R. F. Haseloff, J. Piontek, and I. E. Blasig, “Structure and function of claudins,” Biochimica et Biophysica Acta, vol. 1778, no. 3, pp. 631–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. M. A. Fleegal, S. Hom, L. K. Borg, and T. P. Davis, “Activation of PKC modulates blood-brain barrier endothelial cell permeability changes induced by hypoxia and posthypoxic reoxygenation,” American Journal of Physiology, vol. 289, no. 5, pp. H2012–H2019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. Chen, Q. Lu, E. E. Schneeberger, and D. A. Goodenough, “Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in Ras-transformed Madin-Darby canine kidney cells,” Molecular Biology of the Cell, vol. 11, no. 3, pp. 849–862, 2000. View at Scopus
  126. Z. Wang, K. J. Mandell, C. A. Parkos, R. J. Mrsny, and A. Nusrat, “The second loop of occludin is required for suppression of Raf1-induced tumor growth,” Oncogene, vol. 24, no. 27, pp. 4412–4420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Li and R. J. Mrsny, “Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin,” Journal of Cell Biology, vol. 148, no. 4, pp. 791–800, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. A. M. Hopkins, S. V. Walsh, P. Verkade, P. Boquet, and A. Nusrat, “Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function,” Journal of Cell Science, vol. 116, no. 4, pp. 725–742, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Basuroy, A. Seth, B. Elias, A. P. Naren, and R. Rao, “MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide,” Biochemical Journal, vol. 393, no. 1, pp. 69–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. E. A. Severson, M. Kwon, R. S. Hilgarth, C. A. Parkos, and A. Nusrat, “Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression,” Biochemical and Biophysical Research Communications, vol. 397, no. 3, pp. 592–597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. K. S. Mark and T. P. Davis, “Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation,” American Journal of Physiology, vol. 282, no. 4, pp. H1485–H1494, 2002. View at Scopus
  132. S. Feng, J. Cen, Y. Huang et al., “Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins,” PLoS ONE, vol. 6, no. 8, Article ID e20599, 2011. View at Publisher · View at Google Scholar · View at Scopus