About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 437146, 9 pages
http://dx.doi.org/10.1155/2013/437146
Research Article

Saccharomyces cerevisiae Linker Histone—Hho1p Maintains Chromatin Loop Organization during Ageing

Laboratory of Yeast Molecular Genetics, “Acad. Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Street, Building 21, 1113 Sofia, Bulgaria

Received 10 May 2013; Revised 5 July 2013; Accepted 8 July 2013

Academic Editor: Cristina Mazzoni

Copyright © 2013 Katya Uzunova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wolffe, Chromatin Structure and Function, Oxford Press, London, UK, 2nd edition, 1995.
  2. T. Kouzarides and S. Berger, “Chromatin modifications and their mechanism of action,” in Epigenetics, D. Allis, T. Jenuwein, and D. Reinberg, Eds., pp. 191–209, Cold Spring Harbor Lab Press Press, Cold Spring Harbor, NY, USA, 2007.
  3. J. T. Bell, P. Tsai, T. Yang et al., “Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population,” PLoS Genetics, vol. 8, no. 4, Article ID e1002629, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Burgess, T. Misteli, and P. Oberdoerffer, “DNA damage, chromatin, and transcription: the trinity of aging,” Current Opinion in Cell Biology, vol. 24, pp. 724–730, 2012.
  5. S. Han and A. Brunet, “Histone methylation makes its mark on longevity,” Trends in Cell Biology, vol. 22, no. 1, pp. 42–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Trencsenyi, G. Nagy, F. Bako, P. Kertai, and G. Banfalvi, “Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells,” DNA and Cell Biology, vol. 31, no. 4, pp. 470–478, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. T. J. Maresca and R. Heald, “The long and the short of it: linker histone H1 is required for metaphase chromosome compaction,” Cell Cycle, vol. 5, no. 6, pp. 589–591, 2006. View at Scopus
  8. K. Hizume, S. H. Yoshimura, and K. Takeyasu, “Linker histone H1 per se can induce three-dimensional folding of chromatin fiber,” Biochemistry, vol. 44, no. 39, pp. 12978–12989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. V. A. T. Huynh, P. J. J. Robinson, and D. Rhodes, “A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone,” Journal of Molecular Biology, vol. 345, no. 5, pp. 957–968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Pegoraro, N. Kubben, U. Wickert, H. Göhler, K. Hoffmann, and T. Misteli, “Ageing-related chromatin defects through loss of the NURD complex,” Nature Cell Biology, vol. 11, no. 10, pp. 1261–1269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Váchová, M. Čáp, and Z. Palková, “Yeast colonies: a model for studies of aging, environmental adaptation, and longevity,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 601836, 8 pages, 2012. View at Publisher · View at Google Scholar
  12. A. Grzelak, E. Macierzyńska, and G. Bartosz, “Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae,” Experimental Gerontology, vol. 41, no. 9, pp. 813–818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Palermo, C. Falcone, and C. Mazzoni, “Apoptosis and aging in mitochondrial morphology mutants of S. cerevisiae,” Folia Microbiologica, vol. 52, no. 5, pp. 479–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Mazzoni, E. Mangiapelo, V. Palermo, and C. Falcone, “Hypothesis: is yeast a clock model to study the onset of humans aging phenotypes?” Frontiers in Oncology, vol. 2, article 203, 2012.
  15. M. Ždralević, N. Guaragnella, L. Antonacci, E. Marra, and S. Giannattasio, “Yeast as a tool to study signaling pathways in mitochondrial stress response and cytoprotection,” The Scientific World Journal, vol. 2012, Article ID 912147, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Johnson, P. Rabinovitch, and M. Kaeberlein, “mTOR is a key modulator of ageing and age-related disease,” Nature, vol. 493, no. 338, pp. 338–345, 2013.
  17. G. Miloshev and M. Georgieva, “The linker histone and chromatin of yeast Saccharomyces cerevisiae,” in Histones Class, Structure and Function, C. H. Shen, Ed., pp. 59–75, Nova, New York, NY, USA, 2012.
  18. M. Georgieva, A. Roguev, K. Balashev, J. Zlatanova, and G. Miloshev, “Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo,” Biochimica et Biophysica Acta, vol. 1819, no. 5, pp. 366–374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Wach, A. Brachat, C. Rebischung et al., “5 PCR-based gene targeting in Saccharomyces cerevisiae,” Methods in Microbiology, vol. 26, pp. 67–83, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Fabrizio and V. D. Longo, “The chronological life span of Saccharomyces cerevisiae,” Aging Cell, vol. 2, no. 2, pp. 73–81, 2003. View at Scopus
  21. M. Georgieva, M. Harata, and G. Miloshev, “The nuclear actin-related protein Act3p/Arp4 influences yeast cell shape and bulk chromatin organization,” Journal of Cellular Biochemistry, vol. 104, no. 1, pp. 59–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. L. Smith Jr., J. M. McClure, M. Matecic, and J. S. Smith, “Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins,” Aging Cell, vol. 6, no. 5, pp. 649–662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Downs, E. Kosmidou, A. Morgan, and S. P. Jackson, “Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone,” Molecular Cell, vol. 11, no. 6, pp. 1685–1692, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Schäfer, C. R. E. McEvoy, and H. Patterton, “The Saccharomyces cerevisiae linker histone Hho1p is essential for chromatin compaction in stationary phase and is displaced by transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14838–14843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Breitenbach, M. Jazwinski, and P. Laun, Aging Research in Yeast, vol. 57 of Subcellular Biochemistry, Springer, Berlin, Germany, 2012.
  26. A. P. Gasch, P. T. Spellman, C. M. Kao et al., “Genomic expression programs in the response of yeast cells to environmental changes,” Molecular Biology of the Cell, vol. 11, no. 12, pp. 4241–4257, 2000. View at Scopus
  27. P. A. Padilla, E. K. Fuge, M. E. Crawford, A. Errett, and M. Werner-Washburne, “The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation,” Journal of Bacteriology, vol. 180, pp. 5718–5726, 1998.
  28. K. Hellauer, E. Sirard, and B. Turcotte, “Decreased expression of specific genes in yeast cells lacking histone H1,” The Journal of Biological Chemistry, vol. 276, no. 17, pp. 13587–13592, 2001. View at Scopus
  29. P. L. Olive, J. P. Banat, and R. E. Durand, “Heterogeneity in radiation induced DNA damage and repair in tumor and normal cells using the “Comet” assay,” Radiation Research, vol. 122, pp. 86–89, 1990.
  30. A. Hartmann, E. Agurell, C. Beevers et al., “Recommendations for conducting the in vivo alkaline Comet assay,” Mutagenesis, vol. 18, no. 1, pp. 45–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Bryant, J. Govin, L. Zhang, G. Donahue, B. F. Pugh, and S. L. Berger, “The linker histone plays a dual role during gametogenesis in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 32, no. 14, pp. 2771–2783, 2012.
  32. M. Werner-Washburne, E. L. Braun, M. E. Crawford, and V. M. Peck, “Stationary phase in Saccharomyces cerevisiae,” Molecular Microbiology, vol. 19, no. 6, pp. 1159–1166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Zhang and P. D. Adams, “Heterochromatin and its relationship to cell senescence and cancer therapy,” Cell Cycle, vol. 6, no. 7, pp. 784–789, 2007. View at Scopus
  34. X. Ye, B. Zerlanko, R. Zhang et al., “Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci,” Molecular and Cellular Biology, vol. 27, no. 7, pp. 2452–2465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Funayama, M. Saito, H. Tanobe, and F. Ishikawa, “Loss of linker histone H1 in cellular senescence,” Journal of Cell Biology, vol. 175, no. 6, pp. 869–880, 2006. View at Publisher · View at Google Scholar · View at Scopus