About this Journal Submit a Manuscript Table of Contents
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 574029, 12 pages
http://dx.doi.org/10.1155/2013/574029
Research Article

Resveratrol Prevents Dendritic Cell Maturation in Response to Advanced Glycation End Products

1Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 299 Viale Regina Elena, 00161 Rome, Italy
2Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
3Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
4Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University of Rome, 00185 Rome, Italy

Received 1 March 2013; Revised 6 June 2013; Accepted 7 June 2013

Academic Editor: Mahesh Thirunavukkarasu

Copyright © 2013 Brigitta Buttari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Thorpe and J. W. Baynes, “Maillard reaction products in tissue proteins: new products and new perspectives,” Amino Acids, vol. 25, no. 3-4, pp. 275–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ramasamy, F. Y. Shi, and A. M. Schmidt, “RAGE: therapeutic target and biomarker of the inflammatory response—the evidence mounts,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 505–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Shanmugam, Y. S. Kim, L. Lanting, and R. Natarajan, “Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products,” The Journal of Biological Chemistry, vol. 278, no. 37, pp. 34834–34844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Bierhaus, M. A. Hofmann, R. Ziegler, and P. P. Nawroth, “AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept,” Cardiovascular Research, vol. 37, no. 3, pp. 586–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Basta, A. M. Schmidt, and R. de Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovascular Research, vol. 63, no. 4, pp. 582–592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Smit and H. L. Lutgers, “The clinical relevance of advanced glycation endproducts (AGE) and recent developments in pharmaceutics to reduce AGE accumulation,” Current Medicinal Chemistry, vol. 11, no. 20, pp. 2767–2784, 2004. View at Scopus
  7. T. H. Fleming, P. M. Humpert, P. P. Nawroth, and A. Bierhaus, “Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process—a mini-review,” Gerontology, vol. 57, no. 5, pp. 435–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Hegab, S. Gibbons, L. Neyses, and M. A. Mamas, “Role of advanced glycation end products in cardiovascular disease,” World Journal of Cardiology, vol. 4, pp. 90–102, 2012. View at Publisher · View at Google Scholar
  9. M. A. Baraibar, L. Liu, E. K. Ahmed, and B. Friguet, “Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 919832, 8 pages, 2012. View at Publisher · View at Google Scholar
  10. B. T. Kurien and R. H. Scofield, “Autoimmunity and oxidatively modified autoantigens,” Autoimmunity Reviews, vol. 7, no. 7, pp. 567–573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Ge, Q. Jia, C. Liang et al., “Advanced glycosylation end products might promote atherosclerosis through inducing the immune maturation of dendritic cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2157–2163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Buttari, E. Profumo, A. Capozzi et al., “Advanced glycation end products of human β2 glycoprotein I modulate the maturation and function of DCs,” Blood, vol. 117, no. 23, pp. 6152–6161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. M. Li, T. Mitsuhashi, D. Wojciechowicz et al., “Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 11047–11052, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Miyazaki, H. Nakayama, and S. Horiuchi, “Scavenger receptors that recognize advanced glycation end products,” Trends in Cardiovascular Medicine, vol. 12, no. 6, pp. 258–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Brett, A. M. Schmidt, S. D. Yan et al., “Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues,” The American Journal of Pathology, vol. 143, no. 6, pp. 1699–1712, 1993. View at Scopus
  16. A. Rojas, F. Delgado-Lopez, I. Gonzalez, R. Perez-Castro, J. Romero, and I. Rojas, “The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor,” Cellular Signalling, vol. 25, pp. 609–614, 2013.
  17. A. Agrawal, A. Sridharan, S. Prakash, and H. Agrawal, “Dendritic cells and aging: consequences for autoimmunity,” Expert Review of Clinical Immunology, vol. 8, no. 1, pp. 73–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. S. S. Jensen and M. Gad, “Differential induction of inflammatory cytokines by dendritic cells treated with novel TLR-agonist and cytokine based cocktails: targeting dendritic cells in autoimmunity,” Journal of Inflammation, vol. 7, article 37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhang, Z. Luo, L. Ma, Q. Xu, Q. Yang, and L. Si, “Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for AGE via peroxisome proliferator-activated receptor γ activation,” International Journal of Molecular Medicine, vol. 25, no. 5, pp. 729–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Švajger, N. Obermajer, and M. Jeras, “Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation,” Immunology, vol. 129, no. 4, pp. 525–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Facchiano, A. Lentini, V. Fogliano et al., “Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo,” The American Journal of Pathology, vol. 161, no. 2, pp. 531–541, 2002. View at Scopus
  22. F. Facchiano, D. D'Arcangelo, K. Russo et al., “Glycated fibroblast growth factor-2 is quickly produced in vitro upon low-millimolar glucose treatment and detected in vivo in diabetic mice,” Molecular Endocrinology, vol. 20, no. 11, pp. 2806–2818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. T. Wu, M. C. Tu, and P. Zhung, “Advanced glycation end product (age): characterization of the products from the reaction between d-glucose and serum albumin,” Journal of Clinical Laboratory Analysis, vol. 10, pp. 21–34, 1996.
  24. A. M. Facchiano, A. Facchiano, and F. Facchiano, “Active Sequences Collection (ASC) database: a new tool to assign functions to protein sequences,” Nucleic Acids Research, vol. 31, no. 1, pp. 379–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Aguzzi, F. Facchiano, D. Ribatti et al., “A novel RGDS-analog inhibits angiogenesis in vitro and in vivo,” Biochemical and Biophysical Research Communications, vol. 321, no. 4, pp. 809–814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Catalgol, S. Batirel, Y. Taga, and N. K. Ozer, “Resveratrol: French paradox revisited,” Frontiers in Pharmacology, vol. 3, article 141, 2012.
  27. A. Agrawal, J. Tay, S. Ton, S. Agrawal, and S. Gupta, “Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA,” Journal of Immunology, vol. 182, no. 2, pp. 1138–1145, 2009. View at Scopus
  28. A. Agrawal, J. Tay, G.-E. Yang, S. Agrawal, and S. Gupta, “Age-associated epigenetic modifications in human DNA increase its immunogenicity,” Aging, vol. 2, no. 2, pp. 93–100, 2010. View at Scopus
  29. S. Agrawal, A. Agrawal, B. Doughty et al., “Cutting edge: different toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos,” Journal of Immunology, vol. 171, no. 10, pp. 4984–4989, 2003. View at Scopus
  30. A. Iwasaki and R. Medzhitov, “Regulation of adaptive immunity by the innate immune system,” Science, vol. 327, no. 5963, pp. 291–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Manicassamy and B. Pulendran, “Modulation of adaptive immunity with toll-like receptors,” Seminars in Immunology, vol. 21, no. 4, pp. 185–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. M. Steinman, D. Hawiger, and M. C. Nussenzweig, “Tolerogenic dendritic cells,” Annual Review of Immunology, vol. 21, pp. 685–711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-H. Jing, K.-H. Chen, S.-H. Yang, P.-C. Kuo, and J.-K. Chen, “Resveratrol ameliorates vasculopathy in STZ-induced diabetic rats: role of AGE-RAGE signalling,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 3, pp. 212–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. El-Mowafy and R. E. White, “Resveratrol inhibits MAPK activity and nuclear translocation in coronary artery smooth muscle: reversal of endothelin-1 stimulatory effects,” FEBS Letters, vol. 451, no. 1, pp. 63–67, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Buttari, E. Profumo, V. Mattei et al., “Oxidized β2-glycoprotein I induces human dendritic cell maturation and promotes a T helper type 1 response,” Blood, vol. 106, no. 12, pp. 3880–3887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Profumo, B. Buttari, and R. Riganò, “Oxidized haemoglobin as antigenic target of cell-mediated immune reactions in patients with carotid atherosclerosis,” Autoimmunity Reviews, vol. 8, no. 7, pp. 558–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Profumo, B. Buttari, C. Alessandri et al., “Beta2-glycoprotein I is a target of t cell reactivity in patients with advanced carotid atherosclerotic plaques,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 1, pp. 73–80, 2010. View at Scopus
  38. B. Buttari, E. Profumo, A. Capozzi, M. Sorice, and R. Riganò, “Oxidized human beta2-glycoprotein i: its impact on innate immune cells,” Current Molecular Medicine, vol. 11, no. 9, pp. 719–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Profumo, B. Buttari, and R. Riganò, “Oxidative stress in cardiovascular inflammation: its involvement in autoimmune responses,” International Journal of Inflammation, vol. 2011, Article ID 295705, 6 pages, 2011. View at Publisher · View at Google Scholar
  40. S. F. Yan, R. Ramasamy, Y. Naka, and A. M. Schmidt, “Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond,” Circulation Research, vol. 93, no. 12, pp. 1159–1169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. H. L. Nienhuis, K. de leeuw, J. Bijzet et al., “Skin autofluorescence is increased in systemic lupus erythematosus but is not reflected by elevated plasma levels of advanced glycation endproducts,” Rheumatology, vol. 47, no. 10, pp. 1554–1558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. H. L. A. Nienhuis, J. Westra, A. J. Smit, P. C. Limburg, C. G. M. Kallenberg, and M. Bijl, “AGE and their receptor RAGE in systemic autoimmune diseases: an inflammation propagating factor contributing to accelerated atherosclerosis,” Autoimmunity, vol. 42, no. 4, pp. 302–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. L. Y. Tan, J. M. Forbes, and M. E. Cooper, “AGE, RAGE, and ROS in diabetic nephropathy,” Seminars in Nephrology, vol. 27, no. 2, pp. 130–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M.-P. Wautier, O. Chappey, S. Corda, D. M. Stern, A. M. Schmidt, and J.-L. Wautier, “Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE,” American Journal of Physiology, vol. 280, no. 5, pp. E685–E694, 2001. View at Scopus