About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2011 (2011), Article ID 128360, 9 pages
http://dx.doi.org/10.1155/2011/128360
Research Article

An NTCP Analysis of Urethral Complications from Low Doserate Mono- and Bi-Radionuclide Brachytherapy

1NAmur Research Institute for LIfe Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur, Belgium
2Department of Physics, Clatterbridge Center for Oncology, Clatterbridge Road Bebington, Merseyside CH63 4JY, UK

Received 13 January 2011; Accepted 2 May 2011

Academic Editor: M. J. Zelefsky

Copyright © 2011 V. E. Nuttens et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Zaider, M. J. Zelefsky, G. N. Cohen et al., “Methodology for biologically-based treatment planning for combined low-dose-rate (permanent implant) and high-dose-rate (fractionated) treatment of prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 3, pp. 702–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. G. Dale and B. Jones, Radiobiological Modelling in Radiation Oncology, British Institute of Radiology, London, UK, 2007.
  3. A. Niemierko and M. Goitein, “Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor,” Radiotherapy and Oncology, vol. 29, no. 2, pp. 140–147, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Webb and A. E. Nahum, “A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density,” Physics in Medicine and Biology, vol. 38, no. 6, pp. 653–666, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Sanchez-Nieto and A. E. Nahum, “Bioplan: software for the biological evaluation of radiotherapy treatment plans,” Medical Dosimetry, vol. 25, no. 2, pp. 71–76, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Niemierko, M. Urie, and M. Goitein, “Optimization of 3D radiation therapy with both physical and biological end points and constraints,” International Journal of Radiation Oncology Biology Physics, vol. 23, no. 1, pp. 99–108, 1992. View at Scopus
  7. Y. Kim and W. A. Tomé, “Risk-adaptive optimization: selective boosting of high-risk tumor subvolumes,” International Journal of Radiation Oncology Biology Physics, vol. 66, no. 5, pp. 1528–1542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Malik, C. Eswar, J. Dobson, J. Fenwick, and A. Nahum, “Iso-NTCP customization of the prescription dose in lung-tumour radiotherapy,” Radiotherapy and Oncology, vol. 84, pp. S278–S279, 2007.
  9. A. Haworth, M. Ebert, D. Waterhouse, D. Joseph, and G. Duchesne, “Assessment of i-125 prostate implants by tumor bioeffect,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 5, pp. 1405–1413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Haworth, M. Ebert, D. Waterhouse, D. Joseph, and G. Duchesne, “Prostate implant evaluation using tumour control probability—the effect of input parameters,” Physics in Medicine and Biology, vol. 49, no. 16, pp. 3649–3664, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. D. D'Souza, H. D. Thames, and D. A. Kuban, “Dose-volume conundrum for response of prostate cancer to brachytherapy: summary dosimetric measures and their relationship to tumor control probability,” International Journal of Radiation Oncology Biology Physics, vol. 58, no. 5, pp. 1540–1548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Zaider, “Permanent-implant brachytherapy in prostate cancer,” in New Technologies in Radiation Oncology, pp. 379–388, Springer, Berlin, Germany, 2006.
  13. S. Mallick, R. Azzouzi, L. Cormier, D. Peiffert, and PH. Mangin, “Urinary morbidity after I brachytherapy of the prostate,” BJU International, vol. 92, no. 6, pp. 555–558, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. A. Allen, G. S. Merrick, W. M. Butler et al., “Detailed urethral dosimetry in the evaluation of prostate brachytherapy-related urinary morbidity,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 4, pp. 981–987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Neill, G. Studer, L. Le et al., “The nature and extent of urinary morbidity in relation to prostate brachytherapy urethral dosimetry,” Brachytherapy, vol. 6, no. 3, pp. 173–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Crook, N. Fleshner, C. Roberts, and G. Pond, “Long-term urinary sequelae following iodine prostate brachytherapy,” Journal of Urology, vol. 179, no. 1, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Ohashi, A. Yorozu, K. Toya, S. Saito, and T. Momma, “Acute urinary morbidity following I-125 prostate brachytherapy,” International Journal of Clinical Oncology, vol. 10, no. 4, pp. 262–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Shah, R. R. Cima, E. Benoit, E. L. Breen, and R. Bleday, “Rectal complications after prostate brachytherapy,” Diseases of the Colon and Rectum, vol. 47, no. 9, pp. 1487–1492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. Shah and R. D. Ennis, “Rectal toxicity profile after transperineal interstitial permanent prostate brachytherapy: use of a comprehensive toxicity scoring system and identification of rectal dosimetric toxicity predictors,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 3, pp. 817–824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. M. Waterman and A. P. Dicker, “Probability of late rectal morbidity in I prostate brachytherapy,” International Journal of Radiation Oncology Biology Physics, vol. 55, no. 2, pp. 342–353, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ohashi, A. Yorozu, K. Toya et al., “Rectal morbidity following I-125 prostate brachytherapy in relation to dosimetry,” Japanese Journal of Clinical Oncology, vol. 37, no. 2, pp. 121–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. B. R. Prestidge, W. S. Bice, I. Jurkovic, E. Walker, S. Marianne, and A. Sadeghi, “Cesium-131 permanent prostate brachytherapy: an initial report,” International Journal of Radiation Oncology, Biology, Physics, vol. 63, pp. S336–S337, 2005.
  23. V. E. Nuttens and S. Lucas, “AAPM TG-43U1 formalism adaptation and Monte Carlo dosimetry simulations of multiple-radionuclide brachytherapy sources,” Medical Physics, vol. 33, no. 4, pp. 1101–1107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. V. E. Nuttens and S. Lucas, “Determination of the prescription dose for bi-radionuclide permanent prostate brachytherapy,” Medical Physics, vol. 35, no. 12, pp. 5451–5462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. G. Dale and B. Jones, “The clinical radiobiology of brachytherapy,” British Journal of Radiology, vol. 71, pp. 465–483, 1998. View at Scopus
  26. J. Z. Wang, N. A. Mayr, S. Nag et al., “Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy,” Medical Physics, vol. 33, no. 4, pp. 1025–1032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Antipas, R. G. Dale, and I. P. Coles, “A theoretical investigation into the role of tumour radiosensitivity, clonogen repopulation, tumour shrinkage and radionuclide RBE in permanent brachytherapy implants of I and Pd,” Physics in Medicine and Biology, vol. 46, no. 10, pp. 2557–2569, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Zelefsky, Y. Yamada, G. N. Cohen et al., “Five-year outcome of intraoperative conformal permanent I-125 interstitial implantation for patients with clinically localized prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 67, no. 1, pp. 65–70, 2007. View at Publisher · View at Google Scholar · View at Scopus