About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2011 (2011), Article ID 647987, 7 pages
http://dx.doi.org/10.1155/2011/647987
Review Article

Role of Signaling Transduction Pathways in Development of Castration-Resistant Prostate Cancer

Department of Urology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan

Received 29 June 2011; Accepted 9 August 2011

Academic Editor: Arnulf Stenzl

Copyright © 2011 Takahiro Inoue and Osamu Ogawa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, Cancer Facts and Figures, American Cancer Society, Atlanta, Ga, USA, 2010.
  2. 2. Cancer Statistics in Japan, 2005, http://ganjoho.jp/public/statistics/backnumber/2005_en.html.
  3. C. Huggins, “Effect of orchiectomy and irradiation on cancer of the prostate,” Annals of Surgery, vol. 115, no. 6, pp. 1192–1200, 1942.
  4. B. J. Feldman and D. Feldman, “The development of androgen-independent prostate cancer,” Nature Reviews Cancer, vol. 1, no. 1, pp. 34–45, 2001. View at Scopus
  5. T. Inoue, T. Kobayashi, N. Terada et al., “Roles of androgen-dependent and -independent activation of signal transduction pathways for cell proliferation of prostate cancer cells,” Expert Review of Endocrinology and Metabolism, vol. 2, no. 5, pp. 689–704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Li, C. Yen, D. Liaw et al., “PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer,” Science, vol. 275, no. 5308, pp. 1943–1947, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Liaw, D. J. Marsh, J. Li et al., “Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome,” Nature Genetics, vol. 16, no. 1, pp. 64–67, 1997. View at Scopus
  8. P. A. Steck, M. A. Pershouse, S. A. Jasser et al., “Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers,” Nature Genetics, vol. 15, no. 4, pp. 356–362, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. V. Stambolic, A. Suzuki, J. L. de la Pompa et al., “Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN,” Cell, vol. 95, no. 1, pp. 29–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Shen and C. Abate-Shen, “Molecular genetics of prostate cancer: new prospects for old challenges,” Genes and Development, vol. 24, no. 18, pp. 1967–2000, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18, no. 1, pp. 11–22, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. B. Han, R. Mehra, R. J. Lonigro et al., “Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression,” Modern Pathology, vol. 22, no. 8, pp. 1083–1093, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. H. Gao, X. Ouyang, W. A. Banach-Petrosky, M. M. Shen, and C. Abate-Shen, “Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice,” Cancer Research, vol. 66, no. 16, pp. 7929–7933, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. B. Carver, C. Chapinski, J. Wongvipat et al., “Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer,” Cancer Cell, vol. 19, no. 5, pp. 575–586, 2011. View at Publisher · View at Google Scholar · View at PubMed
  15. D. Mulholland, L. Tran, Y. Li et al., “Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth,” Cancer Cell, vol. 19, no. 6, pp. 792–804, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. T. Kobayashi, Y. Shimizu, N. Terada et al., “Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation,” Prostate, vol. 70, no. 8, pp. 866–874, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. W. Zhang, J. Zhu, C. L. Efferson et al., “Inhibition of tumor growth progression by antiandrogens and mTOR inhibitor in a Pten-deficient mouse model of prostate cancer,” Cancer Research, vol. 69, no. 18, pp. 7466–7472, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. Schayowitz, G. Sabnis, O. Goloubeva, V. C. O. Njar, and A. M. H. Brodie, “Prolonging hormone sensitivity in prostate cancer xenografts through dual inhibition of AR and mTOR,” British Journal of Cancer, vol. 103, no. 7, pp. 1001–1007, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Y. Nishizuka, “Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C,” Science, vol. 258, no. 5082, pp. 607–614, 1992. View at Scopus
  20. Y. Nishizuka, “Protein kinase C and lipid signaling for sustained cellular responses,” The FASEB Journal, vol. 9, no. 7, pp. 484–496, 1995. View at Scopus
  21. J. Koivunen, V. Aaltonen, and J. Peltonen, “Protein kinase C (PKC) family in cancer progression,” Cancer Letters, vol. 235, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Castagna, Y. Takai, and K. Kaibuchi, “Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters,” The Journal of Biological Chemistry, vol. 257, no. 13, pp. 7847–7851, 1982.
  23. E. Metzger, A. Imhof, D. Patel et al., “Phosphorylation of histone H3T6 by PKCβ i controls demethylation at histone H3K4,” Nature, vol. 464, no. 7289, pp. 792–796, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. B. B. Hafeez, W. Zhong, J. Weichert, N. E. Dreckschmidt, M. S. Jamal, and A. K. Verma, “Genetic ablation of PKC epsilon inhibits prostate cancer development and metastasis in transgenic mouse model of prostate adenocarcinoma,” Cancer Research, vol. 71, no. 6, pp. 2318–2327, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. F. Benavides, J. Blando, C. J. Perez et al., “Transgenic overexpression of PKCε in the mouse prostate induces preneoplastic lesions,” Cell Cycle, vol. 10, no. 2, pp. 268–277, 2011. View at Publisher · View at Google Scholar
  26. J. Moscat, M. T. Diaz-Meco, and M. W. Wooten, “Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex,” Cell Death and Differentiation, vol. 16, no. 11, pp. 1426–1437, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. I. García-Cao, A. Duran, M. Collado et al., “Tumour-suppression activity of the proapoptotic regulator Par4,” EMBO Reports, vol. 6, no. 6, pp. 577–583, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. P. J. Fernandez-Marcos, S. Abu-Baker, J. Joshi et al., “Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-κB activation and invasive prostate carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12962–12967, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. T. Inoue, T. Yoshida, Y. Shimizu et al., “Requirement of androgen-dependent activation of protein kinase Cζ for androgen-dependent cell proliferation in LNCaP cells and its roles in transition to androgen-independent cells,” Molecular Endocrinology, vol. 20, no. 12, pp. 3053–3069, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. T. Kobayashi, T. Inoue, Y. Shimizu et al., “Activation of Rac1 is closely related to androgen-independent cell proliferation of prostate cancer cells both in vitro and in vivo,” Molecular Endocrinology, vol. 24, no. 4, pp. 722–734, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. H. Ishiguro, K. Akimoto, Y. Nagashima et al., “aPKCλ/ι promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16369–16374, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Yao, A. Bee, D. Brewer, et al., “PRKC-ζ expression promotes the aggressive phenotype of human prostate cancer cells is a novel target for therapeutic intervention,” Genes and Cancer, vol. 1, no. 5, pp. 444–464, 2010.
  33. A. M. De Marzo, E. A. Platz, S. Sutcliffe et al., “Inflammation in prostate carcinogenesis,” Nature Reviews Cancer, vol. 7, no. 4, pp. 256–269, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Mahmud, E. Franco, and A. Aprikian, “Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis,” British Journal of Cancer, vol. 90, no. 1, pp. 93–99, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. V. Krishnan and D. Feldman, “Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment,” Endocrine-Related Cancer, vol. 17, no. 1, pp. R19–R38, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. D. G. Menter, R. L. Schilsky, and R. N. DuBois, “Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward,” Clinical Cancer Research, vol. 16, no. 5, pp. 1384–1390, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. W. A. Ray, C. M. Stein, J. R. Daugherty, K. Hall, P. G. Arbogast, and M. R. Griffin, “COX-2 selective non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease,” The Lancet, vol. 360, no. 9339, pp. 1071–1073, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. Y. Sugimoto and S. Narumiya, “Prostaglandin E receptors,” The Journal of Biological Chemistry, vol. 282, no. 16, pp. 11613–11617, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. Sonoshita, K. Takaku, N. Sasaki et al., “Acceleration of intestinal polyposis through prostaglandin receptor EP2 in ApcΔ716 knockout mice,” Nature Medicine, vol. 7, no. 9, pp. 1048–1051, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. Jain, G. Chakraborty, R. Raja, S. Kale, and G. C. Kundu, “Prostaglandin E2 regulates tumor angiogenesis in prostate cancer,” Cancer Research, vol. 68, no. 19, pp. 7750–7759, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. T. Yoshida, H. Kinoshita, T. Segawa et al., “Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient,” Cancer Research, vol. 65, no. 21, pp. 9611–9616, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. N. Terada, Y. Shimizu, T. Kamba et al., “Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model,” Cancer Research, vol. 70, no. 4, pp. 1606–1615, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. Hu, T. A. Dunn, S. Wei et al., “Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer,” Cancer Research, vol. 69, no. 1, pp. 16–22, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. Z. Guo, X. Yang, F. Sun et al., “A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth,” Cancer Research, vol. 69, no. 6, pp. 2305–2313, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. Sun, C. C. T. Sprenger, R. L. Vessella et al., “Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant,” The Journal of Clinical Investigation, vol. 120, no. 8, pp. 2715–2730, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. A. Watson, Y. F. Chen, M. D. Balbas et al., “Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 39, pp. 16759–16765, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. K. R. Lamont and D. J. Tindall, “Minireview: alternative activation pathways for the androgen receptor in prostate cancer,” Molecular Endocrinology, vol. 25, no. 6, pp. 897–907, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. O. Tatarov, T. J. Mitchell, M. Seywright, H. Y. Leung, V. G. Brunton, and J. Edwards, “Src family kinase activity is up-regulated in hormone-refractory prostate cancer,” Clinical Cancer Research, vol. 15, no. 10, pp. 3540–3549, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. Z. Guo, B. Dai, T. Jiang et al., “Regulation of androgen receptor activity by tyrosine phosphorylation,” Cancer Cell, vol. 10, no. 4, pp. 309–319, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. T. J. Yeatman, “A renaissance for SRC,” Nature Reviews Cancer, vol. 4, no. 6, pp. 470–480, 2004. View at Scopus
  52. H. Cai, I. Babic, X. Wei, J. Huang, and O. N. Witte, “Invasive prostate carcinoma driven by c-Src and androgen receptor synergy,” Cancer Research, vol. 71, no. 3, pp. 862–872, 2011. View at Publisher · View at Google Scholar · View at PubMed
  53. M. Karlou, V. Tzelepi, and E. Efstathiou, “Therapeutic targeting of the prostate cancer microenvironment,” Nature Reviews Urology, vol. 7, no. 9, pp. 494–509, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. L. Burkhart and J. Sage, “Cellular mechanisms of tumour suppression by the retinoblastoma gene,” Nature Reviews Cancer, vol. 8, no. 9, pp. 671–682, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. A. Sharma, W. S. Yeow, A. Ertel et al., “The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression,” The Journal of Clinical Investigation, vol. 120, no. 12, pp. 4478–4492, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. S. A. Tomlins, D. R. Rhodes, S. Perner et al., “Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer,” Science, vol. 310, no. 5748, pp. 644–648, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. R. S. Mani and A. M. Chinnaiyan, “Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences,” Nature Reviews Genetics, vol. 11, no. 12, pp. 819–829, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. R. S. Mani, S. A. Tomlins, K. Callahan et al., “Induced chromosomal proximity and gene fusions in prostate cancer,” Science, vol. 326, no. 5957, article 1230, p. 1230, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. C. King, J. Xu, J. Wongvipat et al., “Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis,” Nature Genetics, vol. 41, no. 5, pp. 524–526, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. S. Carver, J. Tran, A. Gopalan et al., “Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate,” Nature Genetics, vol. 41, no. 5, pp. 619–624, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. Yu, J. Yu, R. S. Mani et al., “An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression,” Cancer Cell, vol. 17, no. 5, pp. 443–454, 2010. View at Publisher · View at Google Scholar · View at PubMed
  62. P. Kunderfranco, M. Mello-Grand, R. Cangemi et al., “ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer,” PloS one, vol. 5, no. 5, Article ID e10547, 2010. View at Publisher · View at Google Scholar · View at PubMed