About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2012 (2012), Article ID 128965, 8 pages
http://dx.doi.org/10.1155/2012/128965
Review Article

Paradoxical Roles of Tumour Necrosis Factor-Alpha in Prostate Cancer Biology

1Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD 4102, Australia
2Institute of Health and Biomedical Innovation, Cells and Tissue Domain, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
3Department of Medicine, St. George Hospital Clinical School, The University of New South Wales, Sydney, NSW 2217, Australia

Received 26 September 2012; Accepted 19 November 2012

Academic Editor: Jostein Halgunset

Copyright © 2012 Brian W. C. Tse et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Smyth, E. Cretney, M. H. Kershaw, and Y. Hayakawa, “Cytokines in cancer immunity and immunotherapy,” Immunological Reviews, vol. 202, pp. 275–293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. Carswell, L. J. Old, and R. L. Kassel, “An endotoxin induced serum factor that cuases necrosis of tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 9, pp. 3666–3670, 1975. View at Scopus
  3. P. W. Szlosarek and F. R. Balkwill, “Tumour necrosis factor α: a potential target for the therapy of solid tumours,” Lancet Oncology, vol. 4, no. 9, pp. 565–573, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. van Horssen, T. L. M. Ten Hagen, and A. M. M. Eggermont, “TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility,” Oncologist, vol. 11, no. 4, pp. 397–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Wang and Y. Lin, “Tumor necrosis factor and cancer, buddies or foes?” Acta Pharmacologica Sinica, vol. 29, no. 11, pp. 1275–1288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ricote, M. Royuela, I. García-Tuñón, F. R. Bethencourt, R. Paniagua, and B. Fraile, “Pro-apoptotic tumor necrosis factor-α transduction pathway in normal prostate, benign prostatic hyperplasia and prostatic carcinoma,” Journal of Urology, vol. 170, no. 3, pp. 787–790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mocellin, C. R. Rossi, P. Pilati, and D. Nitti, “Tumor necrosis factor, cancer and anticancer therapy,” Cytokine and Growth Factor Reviews, vol. 16, no. 1, pp. 35–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nature Reviews Cancer, vol. 5, no. 11, pp. 845–856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Michalaki, K. Syrigos, P. Charles, and J. Waxman, “Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer,” British Journal of Cancer, vol. 90, no. 12, pp. 2312–2316, 2004. View at Scopus
  10. J. Nakashima, M. Tachibana, M. Ueno, A. Miyajima, S. Baba, and M. Murai, “Association between tumor necrosis factor in serum and cachexia in patients with prostate cancer,” Clinical Cancer Research, vol. 4, no. 7, pp. 1743–1748, 1998. View at Scopus
  11. J. Nakashima, M. Tachibana, M. Ueno, S. Baba, and H. Tazaki, “Tumor necrosis factor and coagulopathy in patients with prostate cancer,” Cancer Research, vol. 55, no. 21, pp. 4881–4885, 1995. View at Scopus
  12. A. Mizokami, A. Gotoh, H. Yamada, E. T. Keller, and T. Matsumoto, “Tumor necrosis factor-α represses androgen sensitivity in the LNCaP prostate cancer cell line,” Journal of Urology, vol. 164, no. 3 I, pp. 800–805, 2000. View at Scopus
  13. M. P. de Miguel, M. Royuela, F. R. Bethencourt, L. Santamaría, B. Fraile, and R. Paniagua, “Immunoexpression of tumour necrosis factor-α and its receptors 1 and 2 correlates with proliferation/apoptosis equilibrium in normal, hyperplasic and carcinomatous human prostrate,” Cytokine, vol. 12, no. 5, pp. 535–538, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Kim, W. K. Kelly, A. Fu et al., “Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer,” Cancer Letters, vol. 302, no. 1, pp. 47–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Nuñez, J. R. Cansino, F. Bethencourt et al., “TNF/IL-1/NIK/NF-κB transduction pathway: a comparative study in normal and pathological human prostate (benign hyperplasia and carcinoma),” Histopathology, vol. 53, no. 2, pp. 166–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Auclerc, E. C. Antoine, F. Cajfinger, A. Brunet-Pommeyrol, C. Agazia, and D. Khayat, “Management of advanced prostate cancer,” Oncologist, vol. 5, no. 1, pp. 36–44, 2000. View at Scopus
  17. J. D. Debes and D. J. Tindall, “Mechanisms of androgen-refractory prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1488–1490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Attard, J. Richards, and J. S. de Bono, “New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway,” Clinical Cancer Research, vol. 17, no. 7, pp. 1649–1657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Schroder, E. D. Crawford, K. Axcrona, et al., “Androgen deprivation therapy: past, present and future,” British Journal of Urology International, vol. 109, supplement 6, pp. 1–12, 2012.
  20. K. N. Chi, A. Bjartell, D. Dearnaley, et al., “Castration-resistant prostate cancer: from new pathophysiology to new treatment targets,” European Urology, vol. 56, no. 4, pp. 594–605, 2009. View at Publisher · View at Google Scholar
  21. J. A. Locke, E. S. Guns, A. A. Lubik et al., “Androgen Levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer,” Cancer Research, vol. 68, no. 15, pp. 6407–6415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Davis, K. L. Nastiuk, and J. J. Krolewski, “TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable,” Molecular Endocrinology, vol. 25, no. 4, pp. 611–620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Harada, E. T. Keller, N. Fujimoto, et al., “Long-term exposure of tumor necrosis factor alpha causes hypersensitivity to androgen and anti-androgen withdrawal phenomenon in LNCaP cancer cells,” Prostate, vol. 46, no. 4, pp. 319–326, 2001.
  24. N. Fujimoto, H. Miyamoto, A. Mizokami et al., “Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells,” Cancer Investigation, vol. 25, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Szlosarek, K. A. Charles, and F. R. Balkwill, “Tumour necrosis factor-α as a tumour promoter,” European Journal of Cancer, vol. 42, no. 6, pp. 745–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Balkwill, “TNF-α in promotion and progression of cancer,” Cancer and Metastasis Reviews, vol. 25, no. 3, pp. 409–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. J. Moore, D. M. Owens, G. Stamp, et al., “Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis,” Nature Medicine, vol. 5, no. 7, pp. 828–831, 1999.
  28. H. Ohshima, M. Tatemichi, and T. Sawa, “Chemical basis of inflammation-induced carcinogenesis,” Archives of Biochemistry and Biophysics, vol. 417, no. 1, pp. 3–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Leibovich, P. J. Polverini, H. M. Shepard, D. M. Wiseman, V. Shively, and N. Nuseir, “Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α,” Nature, vol. 329, no. 6140, pp. 630–632, 1987. View at Scopus
  30. L. Schweigerer, B. Malerstein, and D. Gospodarowicz, “Tumor necrosis factor inhibits the proliferation of cultured capillary endothelial cells,” Biochemical and Biophysical Research Communications, vol. 143, no. 3, pp. 997–1004, 1987. View at Scopus
  31. P. Radhakrishnan, V. Chachadia, et al., “TNFalpha enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands,” Biochemical and Biophysical Research Communications, vol. 409, no. 3, pp. 436–441, 2011. View at Publisher · View at Google Scholar
  32. L. Lü, D. Tang, L. Wang, et al., “Gambogic acid inhibits TNF-α-induced invasion of human prostate cancer PC3 cells in vitro through PI3K/Akt and NF-κB signaling pathways,” Acta Pharmacologica Sinica, vol. 33, no. 4, pp. 531–541, 2012. View at Publisher · View at Google Scholar
  33. V. Subbarayan, A. L. Sabichi, N. Llansa, S. M. Lippman, and D. G. Menter, “Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-α in normal and malignant prostate cells,” Cancer Research, vol. 61, no. 6, pp. 2720–2726, 2001. View at Scopus
  34. L. F. Fajardo, H. H. Kwan, J. Kowalski, S. D. Prionas, and A. C. Allison, “Dual role of tumor necrosis factor-α in angiogenesis,” American Journal of Pathology, vol. 140, no. 3, pp. 539–544, 1992. View at Scopus
  35. E. C. Y. Lee, P. Zhan, R. Schallhom, K. Packman, and M. Tenniswood, “Antiandrogen-induced cell death in LNCaP human prostate cancer cells,” Cell Death and Differentiation, vol. 10, no. 7, pp. 761–771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. Chopra, R. E. Menard, J. Januszewski, and R. R. Mattingly, “TNF-α-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines,” Cancer Letters, vol. 203, no. 2, pp. 145–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Kuhweide, J. Van Damme, and J. L. Ceuppens, “Tumor necrosis factor-α and interleukin 6 synergistically induce T cell growth,” European Journal of Immunology, vol. 20, no. 5, pp. 1019–1025, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Gorelik, Y. Bar-Dagan, and M. B. Mokyr, “Insight into the mechanism(s) through which TNF promotes the generation of T cell-mediated antitumor cytotoxicity by tumor bearer splenic cells,” Journal of Immunology, vol. 156, no. 11, pp. 4298–4308, 1996. View at Scopus
  39. G. Pirtskhalaishvili, G. V. Shurin, C. Esche, D. L. Trump, and M. R. Shurin, “TNF-α protects dendritic cells from prostate cancer-induced apoptosis,” Prostate Cancer and Prostatic Diseases, vol. 4, no. 4, pp. 221–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Borsi, E. Balza, B. Carnemolla et al., “Selective targeted delivery of TNFα to tumor blood vessels,” Blood, vol. 102, no. 13, pp. 4384–4392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Kristensen, M. Nozue, Y. Boucher, and R. K. Jain, “Reduction of interstitial fluid pressure after TNF-α treatment of three human melanoma xenografts,” British Journal of Cancer, vol. 74, no. 4, pp. 533–536, 1996. View at Scopus
  42. M. T. S. Bertilaccio, M. Grioni, B. W. Sutherland et al., “Vasculature-targeted tumor necrosis factor-alpha increases the therapeutic index of doxorubicin against prostate cancer,” Prostate, vol. 68, no. 10, pp. 1105–1115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Läubli and L. Borsig, “Selectins promote tumor metastasis,” Seminars in Cancer Biology, vol. 20, no. 3, pp. 169–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. J. Logothetis and S. H. Lin, “Osteoblasts in prostate cancer metastasis to bone,” Nature Reviews Cancer, vol. 5, no. 1, pp. 21–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. T. R. Graham, K. C. Agrawal, and A. B. Abdel-Mageed, “Independent and cooperative roles of tumor necrosis factor-α, nuclear factor-γB, and bone morphogenetic protein-2 in regulation of metastasis and osteomimicry of prostate cancer cells and differentiation and mineralization of MC3T3-E1 osteoblast-like cells,” Cancer Science, vol. 101, no. 1, pp. 103–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. G. N. Thalmann, P. E. Anezinis, S. M. Chang et al., “Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer,” Cancer Research, vol. 54, no. 10, pp. 2577–2581, 1994. View at Scopus
  47. K. Kimura, C. Bowen, S. Spiegel, and E. P. Gelmann, “Tumor necrosis factor-α sensitizes prostate cancer cells to γ- irradiation-induced apoptosis,” Cancer Research, vol. 59, no. 7, pp. 1606–1614, 1999. View at Scopus
  48. T. D. K. Chung, H. J. Mauceri, D. E. Hallahan et al., “Tumor necrosis factor-α-based gene therapy enhances radiation cytotoxicity in human prostate cancer,” Cancer Gene Therapy, vol. 5, no. 6, pp. 344–349, 1998. View at Scopus
  49. D. Wang, R. B. Montgomery, L. J. Schmidt et al., “Reduced tumor necrosis factor receptor-associated death domain expression is associated with prostate cancer progression,” Cancer Research, vol. 69, no. 24, pp. 9448–9456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Sumitomo, M. Tachibana, J. Nakashima et al., “An essential role for nuclear factor kappa B in preventing TNF-α-induced cell death in prostate cancer cells,” Journal of Urology, vol. 161, no. 2, pp. 674–679, 1999. View at Scopus
  51. M. T. Chow, A. Moller, and M. J. Smyth, “Inflammation and immune surveillance in cancer,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 23–32, 2012.
  52. C. N. Baxevanis, I. F. Voutsas, O. E. Tsitsilonis, et al., “Compromised anti-tumor responses in tumor necrosis factor-alpha knockout mice,” European Journal of Immunology, vol. 30, no. 7, pp. 1957–1966, 2000.
  53. M. J. Smyth, J. M. Kelly, A. G. Baxter, H. Körner, and J. D. Sedgwick, “An essential role for tumor necrosis factor in natural killer cell- mediated tumor rejection in the peritoneum,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1611–1619, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. J. E. Boudreau, A. Bonehill, K. Thielemans, and Y. Wan, “Engineering dendritic cells to enhance cancer immunotherapy,” Molecular Therapy, vol. 19, no. 5, pp. 841–853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. K. F. Scott, M. Sajinovic, J. Hein et al., “Emerging roles for phospholipase A2 enzymes in cancer,” Biochimie, vol. 92, no. 6, pp. 601–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. I. Patel, C. Kurek, and Q. Dong, “The arachidonic acid pathway and its role in prostate cancer development and progression,” Journal of Urology, vol. 179, no. 5, pp. 1668–1675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. W. Buczynski, D. S. Dumlao, and E. A. Dennis, “An integrated omics analysis of eicosanoid biology,” Journal of Lipid Research, vol. 50, no. 6, pp. 1015–1038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. D. Funk, “Prostaglandins and leukotrienes: advances in eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. M. I. Patel, J. Singh, M. Niknami et al., “Cytosolic phospholipase A2-α: a potential therapeutic target for prostate cancer,” Clinical Cancer Research, vol. 14, no. 24, pp. 8070–8079, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. C. C. Leslie, “Regulation of arachidonic acid availability for eicosanoid production,” Biochemistry and Cell Biology, vol. 82, no. 1, pp. 1–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. L.-Y. Khor, K. Bae, A. Pollack et al., “COX-2 expression predicts prostate-cancer outcome: analysis of data from the RTOG 92-02 trial,” The Lancet Oncology, vol. 8, no. 10, pp. 912–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. E. König, T. Senge, E. P. Allhoff, and W. König, “Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer,” The Prostate, vol. 58, no. 2, pp. 121–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Hughes-Fulford, C. F. Li, J. Boonyaratanakornkit, and S. Sayyah, “Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer,” Cancer Research, vol. 66, no. 3, pp. 1427–1433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Oleksowicz, Y. Liu, R. B. Bracken, et al., “Secretory phospholipase A2-IIa is a target of the Her/Her2-elicited pathway and a potential plasma biomarker for poor prognosis of prostate cancer,” The Prostate, vol. 72, pp. 1140–1149, 2012. View at Publisher · View at Google Scholar
  65. L. A. Diaz Jr., W. Messersmith, L. Sokoll et al., “TNF-blockade in patients with advanced hormone refractory prostate cancer,” Investigational New Drugs, vol. 29, no. 1, pp. 192–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Feldmann, “Development of anti-TNF therapy for rheumatoid arthritis,” Nature Reviews Immunology, vol. 2, no. 5, pp. 364–371, 2002. View at Scopus
  67. G. Kramer, G. E. Steiner, P. Sokol et al., “Local intratumoral tumor necrosis factor-α and systemic IFN-α2b in patients with locally advanced prostate cancer,” Journal of Interferon and Cytokine Research, vol. 21, no. 7, pp. 475–484, 2001. View at Scopus
  68. A. Sella, B. B. Aggarwal, R. G. Kilbourn, C. A. Bui, A. A. Zukiwski, and C. J. Logothetis, “Phase I study of tumor necrosis factor plus actinomycin D in patients with androgen-independent prostate cancer,” Cancer Biotherapy, vol. 10, no. 3, pp. 225–235, 1995. View at Scopus
  69. S. H. Hautmann, E. Huland, and H. Huland, “Local intratumor immunotherapy of prostate cancer with interleukin-2 reduces tumor growth,” Anticancer Research, vol. 19, no. 4A, pp. 2661–2663, 1999. View at Scopus
  70. K. M. Hege, K. Jooss, and D. Pardoll, “GM-CSF gene-modifed cancer cell immunotherapies: of mice and men,” International Reviews of Immunology, vol. 25, no. 5-6, pp. 321–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. B. W. Tse, P. J. Russell, M. Lochner, et al., “IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms,” PLoS ONE, vol. 6, no. 9, Article ID e24241, 2011.
  72. A. Khatri, Y. Husaini, K. Ow, J. Chapman, and P. J. Russell, “Cytosine deaminase-uracil phosphoribosyltransferase and interleukin (IL)-12 and IL-18: a multimodal anticancer interface marked by specific modulation in serum cytokines,” Clinical Cancer Research, vol. 15, no. 7, pp. 2323–2334, 2009. View at Publisher · View at Google Scholar · View at Scopus