About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2012 (2012), Article ID 298732, 9 pages
http://dx.doi.org/10.1155/2012/298732
Review Article

Emerging Putative Biomarkers: The Role of Alpha 2 and 6 Integrins in Susceptibility, Treatment, and Prognosis

Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia

Received 10 February 2012; Accepted 17 May 2012

Academic Editor: William Grizzle

Copyright © 2012 James R. Marthick and Joanne L. Dickinson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Provenzano, “New biomarkers in prostate cancer,” Praxis (Bern. 1994), vol. 101, no. 2, pp. 115–121, 2012.
  2. J. Ivaska and J. Heino, “Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix,” Cellular and Molecular Life Sciences, vol. 57, no. 1, pp. 16–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Lu, D. Lu, M. Scully, and V. Kakkar, “The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy,” Perspectives in Medicinal Chemistry, vol. 2008, no. 2, pp. 57–73, 2008. View at Scopus
  4. M. Shimaoka, J. Takagi, and T. A. Springer, “Conformational regulation of integrin structure and function,” Annu Rev Biophys Biomol Struct, vol. 31, pp. 485–516, 2002. View at Publisher · View at Google Scholar
  5. R. D. Burke, “Invertebrate integrins: structure, function, and evolution,” International Review of Cytology, vol. 191, pp. 257–284, 1999. View at Scopus
  6. H. L. Goel, N. Alam, I. N. S. Johnson, and L. R. Languino, “Integrin signaling aberrations in prostate cancer,” American Journal of Translational Research, vol. 1, no. 3, pp. 211–220, 2009. View at Scopus
  7. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. G. J. Thomas, S. Poomsawat, M. P. Lewis, I. R. Hart, P. M. Speight, and J. F. Marshall, “Alpha v beta 6 Integrin upregulates matrix metalloproteinase 9 and promotes migration of normal oral keratinocytes,” Journal of Investigative Dermatology, vol. 116, no. 6, pp. 898–904, 2001. View at Publisher · View at Google Scholar
  9. G. Alghisi and C. Rüegg, “Vascular integrins in tumor angiogenesis: mediators and therapeutic targets,” Endothelium, vol. 13, no. 2, pp. 113–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Avraamides, B. Garmy-Susini, and J. A. Varner, “Integrins in angiogenesis and lymphangiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 604–617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Wehrle-Haller and B. A. Imhof, “Integrin-dependent pathologies,” Journal of Pathology, vol. 200, no. 4, pp. 481–487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. N. E. Ramirez, Z. Zhang, A. Madamanchi et al., “The α2β1 integrin is a metastasis suppressor in mouse models and human cancer,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 226–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. S. Steeg, “Tumor metastasis: mechanistic insights and clinical challenges,” Nature Medicine, vol. 12, no. 8, pp. 895–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Millard, S. Odde, and N. Neamati, “Integrin targetted theapeutics,” Theranostics, vol. 1, pp. 154–188, 2011.
  16. L. Bubendorf, A. Schöpfer, U. Wagner et al., “Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients,” Human Pathology, vol. 31, no. 5, pp. 578–583, 2000. View at Scopus
  17. T. Riikonen, J. Westermarck, L. Koivisto, A. Broberg, V. M. Kahari, and J. Heino, “Integrin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression,” Journal of Biological Chemistry, vol. 270, no. 22, pp. 13548–13552, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Kostenuik, O. Sanchez-Sweatman, F. William Orr, and G. Singh, “Bone cell matrix promotes the adhesion of human prostatic carcinoma cells via the α2β1 integrin,” Clinical and Experimental Metastasis, vol. 14, no. 1, pp. 19–26, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Lang, N. W. Clarke, N. J. R. George, and N. G. Testa, “Primary prostatic epithelial cell binding to human bone marrow stroma and the role of α2β1 integrin,” Clinical and Experimental Metastasis, vol. 15, no. 3, pp. 218–227, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. C. L. Hall, J. Dai, K. L. Van Golen, E. T. Keller, and M. W. Long, “Type I collagen receptor (α2β1) signaling promotes the growth of human prostate cancer cells within the bone,” Cancer Research, vol. 66, no. 17, pp. 8648–8654, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Bonkhoff, U. Stein, and K. Remberger, “Differential expression of α6 and α2 very late antigen integrins in the normal, hyperplastic, and neoplastic prostate: simultaneous demonstration of cell surface receptors and their extracellular ligands,” Human Pathology, vol. 24, no. 3, pp. 243–248, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. B. S. Knudsen and C. K. Miranti, “The impact of cell adhesion changes on proliferation and survival during prostate cancer development and progression,” Journal of Cellular Biochemistry, vol. 99, no. 2, pp. 345–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Pontes-Junior, S. T. Reis, M. Dall'oglio et al., “Evaluation of the expression of integrins and cell adhesion molecules through tissue microarray in lymph node metastases of prostate cancer,” Journal of Carcinogenesis, vol. 8, no. 1, p. 3, 2009. View at Publisher · View at Google Scholar
  24. R. Edgar, M. Domrachev, and A. E. Lash, “Gene expression omnibus: NCBI gene expression and hybridization array data repository,” Nucleic Acids Research, vol. 30, no. 1, pp. 207–210, 2002. View at Scopus
  25. J. D. Knox, A. E. Cress, V. Clark et al., “Differential expression of extracellular matrix molecules and the α6- integrins in the normal and neoplastic prostate,” American Journal of Pathology, vol. 145, no. 1, pp. 167–174, 1994. View at Scopus
  26. T. Mirtti, C. Nylund, J. Lehtonen et al., “Regulation of prostate cell collagen receptors by malignant transformation,” International Journal of Cancer, vol. 118, no. 4, pp. 889–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. T. Collins and N. J. Maitland, “Prostate cancer stem cells,” European Journal of Cancer, vol. 42, no. 9, pp. 1213–1218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Li, X. Chen, T. Calhoun-Davis, K. Claypool, and D. G. Tang, “PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells,” Cancer Research, vol. 68, no. 6, pp. 1820–1825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. J. Klarmann, E. M. Hurt, L. A. Mathews et al., “Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature,” Clinical and Experimental Metastasis, vol. 26, no. 5, pp. 433–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Guzmán-Ramírez, M. Völler, A. Wetterwald et al., “In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue,” Prostate, vol. 69, no. 15, pp. 1683–1693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Miki and J. S. Rhim, “Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells,” Prostate Cancer and Prostatic Diseases, vol. 11, no. 1, pp. 32–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. L. Goh, F. R. Schumacher, D. Easton et al., “Genetic variants associated with predisposition to prostate cancer and potential clinical implications,” Journal of Internal Medicine, vol. 271, no. 4, pp. 353–365, 2012. View at Publisher · View at Google Scholar
  34. S. Tao, Z. Wang, J. Feng et al., “A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants,” Carcinogenesis, vol. 33, no. 3, pp. 598–603, 2012. View at Publisher · View at Google Scholar
  35. T. A. Manolio, “Genomewide association studies and assessment of the risk of disease,” New England Journal of Medicine, vol. 363, no. 2, pp. 166–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Aly, F. Wiklund, J. Xu et al., “Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study,” European Urology, vol. 60, no. 1, pp. 21–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. Zheng, J. Sun, F. Wiklund et al., “Cumulative association of five genetic variants with prostate cancer,” New England Journal of Medicine, vol. 358, no. 9, pp. 910–919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Pashayan, S. W. Duffy, S. Chowdhury et al., “Polygenic susceptibility to prostate and breast cancer: implications for personalised screening,” British Journal of Cancer, vol. 104, no. 10, pp. 1656–1663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Edwards, D. G. R. Evans, Q. Hope et al., “Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis,” British Journal of Cancer, vol. 103, no. 6, pp. 918–924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Edwards, Z. Kote-Jarai, J. Meitz et al., “Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene,” American Journal of Human Genetics, vol. 72, no. 1, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. E. T. Cirulli and D. B. Goldstein, “Uncovering the roles of rare variants in common disease through whole-genome sequencing,” Nature Reviews Genetics, vol. 11, no. 6, pp. 415–425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. V. Ramagopalan, D. A. Dyment, M. Z. Cader et al., “Rare variants in the CYP27B1 gene are associated with multiple sclerosis,” Annals of Neurology, vol. 70, no. 6, pp. 881–886, 2011. View at Publisher · View at Google Scholar
  43. C. M. Ewing, A. M. Ray, E. M. Lange et al., “Germline mutations in HOXB13 and prostate-cancer risk,” New England Journal of Medicine, vol. 366, no. 2, pp. 141–149, 2012. View at Publisher · View at Google Scholar
  44. M. Deb, D. Sengupta, and S. K. Patra, “Integrin-epigenetics: a system with imperative impact on cancer,” Cancer Metastasis, vol. 31, no. 1-2, pp. 221–234, 2012.
  45. R. Maruyama, S. Toyooka, K. O. Toyooka et al., “Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features,” Clinical Cancer Research, vol. 8, no. 2, pp. 514–519, 2002. View at Scopus
  46. C. Jerónimo, P. J. Bastian, A. Bjartell et al., “Epigenetics in prostate cancer: biologic and clinical relevance,” European Urology, vol. 60, no. 4, pp. 753–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Albany, A. S. Alva, A. M. Aparicio et al., “Epigenetics in prostate cancer,” Prostate Cancer, vol. 2011, Article ID 580318, 12 pages, 2011. View at Publisher · View at Google Scholar
  48. M. T. Bedford and P. D. Van Helden, “Hypomethylation of DNA in pathological conditions of the human prostate,” Cancer Research, vol. 47, no. 20, pp. 5274–5276, 1987. View at Scopus
  49. W. G. Nelson, S. Yegnasubramanian, A. T. Agoston et al., “Abnormal DNA methylation, epigenetics, and prostate cancer,” Frontiers in Bioscience, vol. 12, no. 11, pp. 4254–4266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. Kim, S. M. Dhanasekaran, J. R. Prensner et al., “Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer,” Genome Research, vol. 21, no. 7, pp. 1028–1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Van Neste, J. G. Herman, G. Otto, J. W. Bigley, J. I. Epstein, and W. Van Criekinge, “The Epigenetic promise for prostate cancer diagnosis,” Prostate, vol. 72, no. 11, pp. 1248–1261, 2012.
  52. O. Cussenot, A. R. Azzouzi, G. Bantsimba-Malanda et al., “Effect of genetic variability within 8q24 on aggressiveness patterns at diagnosis and familial status of prostate cancer,” Clinical Cancer Research, vol. 14, no. 17, pp. 5635–5639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. B. T. Helfand, S. Loeb, J. Cashy et al., “Tumor Characteristics of Carriers and Noncarriers of the deCODE 8q24 Prostate Cancer Susceptibility Alleles,” Journal of Urology, vol. 179, no. 6, pp. 2197–2202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. FitzGerald, E. M. Kwon, M. P. Conomos et al., “Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 6, pp. 1196–1203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. I. P. Gorlov, G. E. Gallick, O. Y. Gorlova, C. Amos, and C. J. Logothetis, “GWAS meets microarray: are the results of genome-wide association studies and gene-expression profiling consistent? Prostate cancer as an example,” PLoS ONE, vol. 4, no. 8, Article ID e6511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. A. Eeles, Z. Kote-Jarai, A. A. Al Olama et al., “Identification of seven new prostate cancer susceptibility loci through a genome-wide association study,” Nature Genetics, vol. 41, no. 10, pp. 1116–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Cheng, S. J. Plummer, C. Neslund-Dudas et al., “Prostate cancer susceptibility variants confer increased risk of disease progression,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 9, pp. 2124–2132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. M. FitzGerald, B. Patterson, R. Thomson et al., “Identification of a prostate cancer susceptibility gene on chromosome 5p13q12 associated with risk of both familial and sporadic disease,” European Journal of Human Genetics, vol. 17, no. 3, pp. 368–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. U. Langsenlehner, W. Renner, B. Yazdani-Biuki et al., “Integrin alpha-2 and beta-3 gene polymorphisms and breast cancer risk,” Breast Cancer Research and Treatment, vol. 97, no. 1, pp. 67–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Vairaktaris, C. Yapijakis, S. Derka et al., “Association of platelet glycoprotein Ia polymorphism with minor increase of risk for oral cancer,” European Journal of Surgical Oncology, vol. 32, no. 4, pp. 455–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Kimchi-Sarfaty, J. M. Oh, I. W. Kim et al., “A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity,” Science, vol. 315, no. 5811, pp. 525–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Katsnelson, “Breaking the silence,” Nature Medicine, vol. 17, no. 12, pp. 1536–1538, 2011. View at Publisher · View at Google Scholar
  63. B. Jacquelin, M. D. Tarantino, M. Kritzik et al., “Allele-dependent transcriptional regulation of the human integrin α2 gene,” Blood, vol. 97, no. 6, pp. 1721–1726, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Ye, B. Xu, G. V. Nikiforovich, S. Bloch, and S. Achilefu, “Exploring new near-infrared fluorescent disulfide-based cyclic RGD peptide analogs for potential integrin-targeted optical imaging,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 7, pp. 2116–2120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. C. W. Huang, Z. Li, H. Cai, T. Shahinian, and P. S. Conti, “Novel α2β1 integrin-targeted peptide probes for prostate cancer imaging,” Molecular Imaging, vol. 10, no. 4, pp. 284–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. C. W. Huang, Z. Li, H. Cai, K. Chen, T. Shahinian, and P. S. Conti, “Design, synthesis and validation of integrin α2β 1-targeted probe for microPET imaging of prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 7, pp. 1313–1322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. C. W. Huang, Z. Li, and P. S. Conti, “In vivo near-infrared fluorescence imaging of integrin alpha2beta1 in prostate cancer with cell-penetrating-peptide-conjugated DGEA probe,” Journal of Nuclear Medicine, vol. 52, no. 12, pp. 1979–1986, 2011. View at Publisher · View at Google Scholar
  68. E. Giovannucci, “A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer,” Experimental Biology and Medicine, vol. 227, no. 10, pp. 852–859, 2002. View at Scopus
  69. V. A. Kirsh, S. T. Mayne, U. Peters et al., “A prospective study of lycopene and tomato product intake and risk of prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 1, pp. 92–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Ilic, K. M. Forbes, and C. Hassed, “Lycopene for the prevention of prostate cancer,” Cochrane database of systematic reviews, vol. 11, Article ID 008007, 2011.
  71. D. Heber and Q. Y. Lu, “Overview of mechanisms of action of lycopene,” Experimental Biology and Medicine, vol. 227, no. 10, pp. 920–923, 2002. View at Scopus
  72. T. Bureyko, H. Hurdle, J. B. Metcalfe, M. T. Clandinin, and V. C. Mazurak, “Reduced growth and integrin expression of prostate cells cultured with lycopene, vitamin E and fish oil in vitro,” British Journal of Nutrition, vol. 101, no. 7, pp. 990–997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. J. Magbanua, R. Roy, E. V. Sosa et al., “Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation,” PLoS One, vol. 6, no. 9, Article ID e24004, 2011.
  74. Z. Gavish, J. H. Pinthus, V. Barak et al., “Growth inhibition of cancer xenografts by halofuginone,” prostate, vol. 51, no. 2, pp. 73–83, 2002. View at Publisher · View at Google Scholar
  75. Z. Zhang, N. E. Ramirez, T. E. Yankeelov et al., “α2β1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner,” Blood, vol. 111, no. 4, pp. 1980–1988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Pozzi, W. F. LeVine, and H. A. Gardner, “Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis,” Oncogene, vol. 21, no. 2, pp. 272–281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Pozzi, P. E. Moberg, L. A. Miles, S. Wagner, P. Soloway, and H. A. Gardner, “Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 5, pp. 2202–2207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. D. R. Senger, C. A. Perruzzi, M. Streit, V. E. Koteliansky, A. R. De Fougerolles, and M. Detmar, “The α1β1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis,” American Journal of Pathology, vol. 160, no. 1, pp. 195–204, 2002. View at Scopus
  79. J. A. Eble, S. Niland, A. Dennes, A. Schmidt-Hederich, P. Bruckner, and G. Brunner, “Rhodocetin antagonizes stromal tumor invasion in vitro and other α2β1 integrin-mediated cell functions,” Matrix Biology, vol. 21, no. 7, pp. 547–558, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Sabherwal, V. L. Rothman, S. Dimitrov et al., “Integrinα2β1 mediates the anti-angiogenic and anti-tumor activities of angiocidin, a novel tumor-associated protein,” Experimental Cell Research, vol. 312, no. 13, pp. 2443–2453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. A. Eble, “Collagen-binding integrins as pharmaceutical targets,” Current Pharmaceutical Design, vol. 11, no. 7, pp. 867–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. Irinotecan Plus E7820 Versus FOLFIRI in Second-Line Therapy in Patients With Locally Advanced or Metastatic Colon or Rectal Cancer, http://clinicaltrials.gov/ct2/show/record/NCT01347645?recr=Open&cond=colon+cancer&lup_s=06%2F04%2F2010&lup_d=360.
  83. Y. Funahashi, N. H. Sugi, T. Semba et al., “Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium,” Cancer Research, vol. 62, no. 21, pp. 6116–6123, 2002. View at Scopus
  84. R. J. Keizer, Y. Funahashi, T. Semba et al., “Evaluation of α2-integrin expression as a biomarker for tumor growth inhibition for the investigational integrin inhibitor E7820 in preclinical and clinical studies,” AAPS Journal, vol. 13, no. 2, pp. 230–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. R. J. Keizer, M. K. Zamacona, M. Jansen et al., “Application of population pharmacokinetic modeling in early clinical development of the anticancer agent E7820,” Investigational New Drugs, vol. 27, no. 2, pp. 140–152, 2009. View at Publisher · View at Google Scholar · View at Scopus