About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2013 (2013), Article ID 519436, 15 pages
http://dx.doi.org/10.1155/2013/519436
Review Article

Galectins as New Prognostic Markers and Potential Therapeutic Targets for Advanced Prostate Cancers

Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Buenos Aires, Argentina

Received 20 May 2013; Revised 6 August 2013; Accepted 8 August 2013

Academic Editor: James L. Gulley

Copyright © 2013 Diego J. Laderach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. R. Denmeade and J. T. Isaacs, “A history of prostate cancer treatment,” Nature Reviews Cancer, vol. 2, no. 5, pp. 389–396, 2002. View at Scopus
  3. N. Taniguchi, K. Nakamura, H. Narimatsu, C.-W. Von Der Lieth, and J. Paulson, “Human disease glycomics/proteome initiative workshop and the 4th HUPO annual congress,” Proteomics, vol. 6, no. 1, pp. 12–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. N. H. Packer, C.-W. Von Der Lieth, K. F. Aoki-Kinoshita et al., “Frontiers in glycomics: bioinformatics and biomarkers in disease: an NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, bethesda MD (September 11-13, 2006),” Proteomics, vol. 8, no. 1, pp. 8–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Lowe, “Glycosylation, immunity, and autoimmunity,” Cell, vol. 104, no. 6, pp. 809–812, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Daniels, K. A. Hogquist, and S. C. Jameson, “Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses,” Nature Immunology, vol. 3, no. 10, pp. 903–910, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. H. Dube and C. R. Bertozzi, “Glycans in cancer and inflammation—potential for therapeutics and diagnostics,” Nature Reviews Drug Discovery, vol. 4, no. 6, pp. 477–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. D. Rillahan and J. C. Paulson, “Glycan microarrays for decoding the glycome,” Annual Review of Biochemistry, vol. 80, pp. 797–823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F.-T. Liu and G. A. Rabinovich, “Galectins as modulators of tumour progression,” Nature Reviews Cancer, vol. 5, no. 1, pp. 29–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Rabinovich and D. O. Croci, “Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer,” Immunity, vol. 36, no. 3, pp. 322–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. O. B. Garner and L. G. Baum, “Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling,” Biochemical Society Transactions, vol. 36, no. 6, pp. 1472–1477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Compagno, F. Jaworski, L. Gentilini et al., Galectins: Major Signaling Modulators Inside and Outside the Cell, 2013.
  13. F. Yu, R. L. Finley Jr., A. Raz, and H.-R. C. Kim, “Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation,” The Journal of Biological Chemistry, vol. 277, no. 18, pp. 15819–15827, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Paz, R. Haklai, G. Elad-Sfadia, E. Ballan, and Y. Kloog, “Galectin-1 binds oncogenic H-ras to mediate ras membrane anchorage and cell transformation,” Oncogene, vol. 20, no. 51, pp. 7486–7493, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Camby, M. Le Mercier, F. Lefranc, and R. Kiss, “Galectin-1: a small protein with major functions,” Glycobiology, vol. 16, no. 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. T. Elola, C. Wolfenstein-Todel, M. F. Troncoso, G. R. Vasta, and G. A. Rabinovich, “Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival,” Cellular and Molecular Life Sciences, vol. 64, no. 13, pp. 1679–1700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. A. Rabinovich and M. A. Toscano, “Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation,” Nature Reviews Immunology, vol. 9, no. 5, pp. 338–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Y. Yang, G. A. Rabinovich, and F. T. Liu, “Galectins: structure, function and therapeutic potential,” Expert Reviews in Molecular Medicine, vol. 10, p. e17, 2008. View at Publisher · View at Google Scholar
  19. D. N. W. Cooper, “Galectinomics: finding themes in complexity,” Biochimica et Biophysica Acta, vol. 1572, no. 2-3, pp. 209–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. G. A. Rabinovich, M. A. Toscano, S. S. Jackson, and G. R. Vasta, “Functions of cell surface galectin-glycoprotein lattices,” Current Opinion in Structural Biology, vol. 17, no. 5, pp. 513–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ellerhorst, “Induction of differentiation and apoptosis in the prostate cancer cell line LNCaP by sodium butyrate and galectin-1,” International Journal of Oncology, vol. 14, no. 2, pp. 225–232, 1999. View at Scopus
  22. H. F. Valenzuela, K. E. Pace, P. V. Cabrera et al., “O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1,” Cancer Research, vol. 67, no. 13, pp. 6155–6162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Laderach, L. Gentilini, L. Giribaldi et al., “A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease,” Cancer Research, vol. 73, pp. 86–96, 2013.
  24. N. Clausse, F. Van Den Brûle, D. Waltregny, F. Garnier, and V. Castronovo, “Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion,” Angiogenesis, vol. 3, no. 4, pp. 317–325, 1999. View at Scopus
  25. J. Ellerhorst, “Differential expression of endogenous galectin-1 and gaIectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype,” International Journal of Oncology, vol. 14, no. 2, pp. 217–224, 1999. View at Scopus
  26. H. Andersen, O. N. Jensen, E. P. Moiseeva, and E. Eriksen, “A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells,” Journal of Bone and Mineral Research, vol. 18, no. 2, pp. 195–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. He and L. G. Baum, “Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration,” Laboratory Investigation, vol. 86, no. 6, pp. 578–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Fukumori, N. Oka, Y. Takenaka et al., “Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer,” Cancer Research, vol. 66, no. 6, pp. 3114–3119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Wang, P. Nangia-Makker, L. Tait et al., “Regulation of prostate cancer progression by galectin-3,” American Journal of Pathology, vol. 174, no. 4, pp. 1515–1523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Califice, V. Castronovo, M. Bracke, and F. Van Den Brǔle, “Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3,” Oncogene, vol. 23, no. 45, pp. 7527–7536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Wang, P. Nangia-Makker, V. Balan, V. Hogan, and A. Raz, “Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment,” Cell Death and Disease, vol. 1, no. 11, article e101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Fukumori, H.-O. Kanayama, and A. Raz, “The role of galectin-3 in cancer drug resistance,” Drug Resistance Updates, vol. 10, no. 3, pp. 101–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Guha, E. Kaptan, G. Bandyopadhyaya et al., “Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 13, pp. 5052–5057, 2013.
  34. V. V. Glinsky, G. V. Glinsky, K. Rittenhouse-Olson et al., “The role of thomsen-friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium,” Cancer Research, vol. 61, no. 12, pp. 4851–4857, 2001. View at Scopus
  35. O. V. Glinskii, V. H. Huxley, G. V. Glinsky, K. J. Pienta, A. Raz, and V. V. Glinsky, “Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs,” Neoplasia, vol. 7, no. 5, pp. 522–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. E. Lehr and K. J. Pienta, “Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line,” Journal of the National Cancer Institute, vol. 90, no. 2, pp. 118–123, 1998. View at Scopus
  37. K. A. Spivey, I. Chung, J. Banyard, I. Adini, H. A. Feldman, and B. R. Zetter, “A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis,” Oncogene, vol. 31, no. 18, pp. 2362–2372, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. K. J. Pienta, H. Naik, A. Akhtar et al., “Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin,” Journal of the National Cancer Institute, vol. 87, no. 5, pp. 348–353, 1995. View at Scopus
  39. O. V. Glinskii, S. Sud, V. V. Mossine et al., “Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin-3 inhibitor lactulose-L-leucine,” Neoplasia, vol. 14, no. 1, pp. 65–73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Yang, Z. Zhou, S. He et al., “Treatment of prostate carcinoma with (Galectin-3)-targeted HPMA copolymer-(G3-C12)-5-Fluorouracil conjugates,” Biomaterials, vol. 33, no. 7, pp. 2260–2271, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Jiang, I. Eliaz, and D. Sliva, “Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells,” Integrative Cancer Therapies, vol. 12, no. 2, pp. 145–152, 2013.
  42. Z.-Z. Su, J. Lin, R. Shen, P. E. Fisher, N. I. Goldstein, and P. B. Fisher, “Surface-epitope masking and expression cloning identifies the human prostate carcinoma tumor antigen gene PCTA-1 a member of the galectin gene family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 14, pp. 7252–7257, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Zick, M. Eisenstein, R. A. Goren, Y. R. Hadari, Y. Levy, and D. Ronen, “Role of galectin-8 as a modulator of cell adhesion and cell growth,” Glycoconjugate Journal, vol. 19, no. 7–9, pp. 517–526, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Seelenmeyer, C. Stegmayer, and W. Nickel, “Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles,” FEBS Letters, vol. 582, no. 9, pp. 1362–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Gorelik, U. Galili, and A. Raz, “On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis,” Cancer and Metastasis Reviews, vol. 20, no. 3-4, pp. 245–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Mazurek, J. S. Yun, K.-F. Liu et al., “Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells,” The Journal of Biological Chemistry, vol. 282, no. 29, pp. 21337–21348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Mazurek, Y. J. Sun, J. E. Price et al., “Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes,” Cancer Research, vol. 65, no. 23, pp. 10767–10775, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Nangia-Makker, Y. Wang, T. Raz et al., “Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer,” International Journal of Cancer, vol. 127, no. 11, pp. 2530–2541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Balan, P. Nangia-Makker, D. H. Kho, Y. Wang, and A. Raz, “Tyrosine-phosphorylated galectin-3 protein is resistant to prostate-specific antigen (PSA) cleavage,” The Journal of Biological Chemistry, vol. 287, no. 8, pp. 5192–5198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Salatino and G. A. Rabinovich, “Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview,” Methods in Molecular Biology, vol. 677, pp. 355–374, 2011. View at Scopus
  51. V. Balan, P. Nangia-Makker, and A. Raz, “Galectins as cancer biomarkers,” Cancers, vol. 2, no. 2, pp. 592–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Ellerhorst, P. Troncoso, X.-C. Xu, J. Lee, and R. Lotan, “Galectin-1 and galectin-3 expression in human prostate tissue and prostate cancer,” Urological Research, vol. 27, no. 5, pp. 362–367, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. F. A. van den Brule, D. Waltregny, and V. Castronovo, “Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients,” The Journal of Pathology, vol. 193, no. 1, pp. 80–87, 2001.
  54. F. A. Van Den Brûle, D. Waltregny, F.-T. Liu, and V. Castronovo, “Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression,” International Journal of Cancer, vol. 89, no. 4, pp. 361–367, 2000. View at Scopus
  55. J. S. Knapp, S. D. Lokeshwar, U. Vogel et al., “Galectin-3 expression in prostate cancer and benign prostate tissues: correlation with biochemical recurrence,” World Journal of Urology, vol. 31, no. 2, pp. 351–358, 2013.
  56. M. H. Vaarala, K. Porvari, A. Kyllönen, and P. Vihko, “Differentially expressed genes in two LNCaP prostate cancer cell lines reflecting changes during prostate cancer progression,” Laboratory Investigation, vol. 80, no. 8, pp. 1259–1268, 2000. View at Scopus
  57. L. Ingrassia, I. Camby, F. Lefranc et al., “Anti-galectin compounds as potential anti-cancer drugs,” Current Medicinal Chemistry, vol. 13, no. 29, pp. 3513–3527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Compagno, C. Merle, A. Morin et al., “SIRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas,” PLoS ONE, vol. 2, no. 10, Article ID e1006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. E. Kaighn, K. Shankar Narayan, and Y. Ohnuki, “Establishment and characterization of a human prostatic carcinoma cell line (PC-3),” Investigative Urology, vol. 17, no. 1, pp. 16–23, 1979. View at Scopus
  60. R. M. Sramkoski, T. G. Pretlow II, J. M. Giaconia et al., “A new human prostate carcinoma cell line, 22Rv1,” In Vitro Cellular and Developmental Biology, vol. 35, no. 7, pp. 403–409, 1999. View at Scopus
  61. R. V. Gopalkrishnan, T. Roberts, S. Tuli, D.-C. Kang, K. A. Christiansen, and P. B. Fisher, “Molecular characterization of prostate carcinoma tumor antigen-1, PCTA-1, a human galectin-8 related gene,” Oncogene, vol. 19, no. 38, pp. 4405–4416, 2000. View at Scopus
  62. M. A. Toscano, G. A. Bianco, J. M. Ilarregui et al., “Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death,” Nature Immunology, vol. 8, no. 8, pp. 825–834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Levy, R. Arbel-Goren, Y. R. Hadari et al., “Galectin-8 functions as a matricellular modulator of cell adhesion,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 31285–31295, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. R. B. Zavareh, M. A. Sukhai, R. Hurren et al., “Suppression of cancer progression by MGAT1 shRNA knockdown,” PLoS ONE, vol. 7, no. 9, Article ID e43721, 2013. View at Publisher · View at Google Scholar
  65. M. Le Mercier, S. Fortin, V. Mathieu et al., “Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression1,” Neoplasia, vol. 11, no. 5, pp. 485–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. V. L. Thijssen, S. Hulsmans, and A. W. Griffioen, “The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells,” American Journal of Pathology, vol. 172, no. 2, pp. 545–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. V. L. Thijssen, B. Barkan, H. Shoji et al., “Tumor cells secrete galectin-1 to enhance endothelial cell activity,” Cancer Research, vol. 70, no. 15, pp. 6216–6224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. D. O. Croci, M. Salatino, N. Rubinstein et al., “Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma,” The Journal of Experimental Medicine, vol. 209, no. 11, pp. 1985–2000, 2012.
  69. A. Banh, J. Zhang, H. Cao et al., “Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis,” Cancer Research, vol. 71, no. 13, pp. 4423–4431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Karlou, V. Tzelepi, and E. Efstathiou, “Therapeutic targeting of the prostate cancer microenvironment,” Nature Reviews Urology, vol. 7, no. 9, pp. 494–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Semenas, C. Allegrucci, S. A. Boorjian, N. P. Mongan, and J. L. Persson, “Overcoming drug resistance and treating advanced prostate cancer,” Current Drug Targets, vol. 13, no. 10, pp. 1308–1323, 2012.
  72. P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” The New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Huang, C. H. Chau, and W. D. Figg, “Challenges to improved therapeutics for metastatic castrate resistant prostate cancer: from recent successes and failures,” Journal of Hematology & Oncology, vol. 5, p. 35, 2012. View at Publisher · View at Google Scholar
  74. N. Hasegawa, K. Mizutani, T. Suzuki, T. Deguchi, and Y. Nozawa, “A comparative study of protein profiling by proteomic analysis in camptothecin-resistant PC3 and camptothecin-sensitive LNCaP human prostate cancer cells,” Urologia Internationalis, vol. 77, no. 4, pp. 347–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. R.-Y. Yang, D. K. Hsu, and F.-T. Liu, “Expression of galectin-3 modulates T-cell growth and apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6737–6742, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Compagno, D. J. Laderach, L. Gentilini, F. M. Jaworski, and G. A. Rabinovich, “Delineating the “galectin signature” of tumor microenvironment,” Oncoimmunology, vol. 2, no. 4, Article ID e23565, 2013.
  77. P. Nangia-Makker, Y. Honjo, R. Sarvis et al., “Galectin-3 induces endothelial cell morphogenesis and angiogenesis,” American Journal of Pathology, vol. 156, no. 3, pp. 899–909, 2000. View at Scopus
  78. V. L. J. L. Thijssen, R. Postel, R. J. M. G. E. Brandwijk et al., “Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 43, pp. 15975–15980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. V. M. C. Delgado, L. G. Nugnes, L. L. Colombo et al., “Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8,” FASEB Journal, vol. 25, no. 1, pp. 242–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Akahani, P. Nangia-Makker, H. Inohara, H.-R. C. Kim, and A. Raz, “Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family,” Cancer Research, vol. 57, no. 23, pp. 5272–5276, 1997. View at Scopus
  81. F. Van den Brûle, S. Califice, F. Garnier, P. L. Fernandez, A. Berchuck, and V. Castronovo, “Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin,” Laboratory Investigation, vol. 83, no. 3, pp. 377–386, 2003. View at Scopus
  82. S. Califice, V. Castronovo, and F. Van Den Brûle, “Galectin-3 and cancer,” International Journal of Oncology, vol. 25, no. 4, pp. 983–992, 2004. View at Scopus
  83. J. Heimburg, J. Yan, S. Morey et al., “Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-friedenreich antigen monoclonal antibody JAA-F11,” Neoplasia, vol. 8, no. 11, pp. 939–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. S. Merseburger, M. W. Kramer, J. Hennenlotter et al., “Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer,” Prostate, vol. 68, no. 1, pp. 72–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Ahmed, P. P. Banerjee, and G. R. Vasta, “Differential expression of galectins in normal, benign and malignant prostate epithelial cells: silencing of galectin-3 expression in prostate cancer by its promoter methylation,” Biochemical and Biophysical Research Communications, vol. 358, no. 1, pp. 241–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Vyakarnam, A. J. Lenneman, K. M. Lakkides, R. J. Patterson, and J. L. Wang, “A comparative nuclear localization study of galectin-1 with other splicing components,” Experimental Cell Research, vol. 242, no. 2, pp. 419–428, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. I. Paron, A. Scaloni, A. Pines et al., “Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation,” Biochemical and Biophysical Research Communications, vol. 302, no. 3, pp. 545–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Vyakarnam, S. F. Dagher, J. L. Wang, and R. J. Patterson, “Evidence for a role for galectin-1 in pre-mRNA splicing,” Molecular and Cellular Biology, vol. 17, no. 8, pp. 4730–4737, 1997. View at Scopus
  89. S. F. Dagher, J. L. Wang, and R. J. Patterson, “Identification of galectin-3 as a factor in pre-mRNA splicing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1213–1217, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Maier, K. Rösch, K. Herkommer et al., “A candidate gene approach within the susceptibility region PCaP on 1q42.2-43 excludes deleterious mutations of the PCTA-1 gene to be responsible for hereditary prostate cancer,” European Urology, vol. 42, no. 3, pp. 301–307, 2002. View at Publisher · View at Google Scholar · View at Scopus