About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2013 (2013), Article ID 763569, 15 pages
http://dx.doi.org/10.1155/2013/763569
Research Article

Androgen Receptor-Target Genes in African American Prostate Cancer Disparities

1Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
2Medical Faculty Associates, The George Washington University Medical Center, Washington, DC 20037, USA
3Division of Urology, Mount Sinai Medical Center, Columbia University, Miami Beach, FL 33140, USA
4The GW Cancer Institute, The George Washington University Medical Center, Washington, DC 20037, USA
5Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA

Received 21 September 2012; Revised 14 December 2012; Accepted 18 December 2012

Academic Editor: Craig Robson

Copyright © 2013 Bi-Dar Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA: Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA: Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Shen and C. Abate-Shen, “Molecular genetics of prostate cancer: new prospects for old challenges,” Genes and Development, vol. 24, no. 18, pp. 1967–2000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. P. Gelmann, “Molecular biology of the androgen receptor,” Journal of Clinical Oncology, vol. 20, no. 13, pp. 3001–3015, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. R. de Winter, P. J. A. Janssen, H. M. E. B. Sleddens et al., “Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer,” American Journal of Pathology, vol. 144, no. 4, pp. 735–746, 1994. View at Scopus
  6. G. W. Chodak, D. M. Kranc, L. A. Puy, H. Takeda, K. Johnson, and C. Chang, “Nuclear localization of androgen receptor in heterogeneous samples of normal, hyperplastic and neoplastic human prostate,” Journal of Urology, vol. 147, no. 3, pp. 798–803, 1992. View at Scopus
  7. M. V. Sadi, P. C. Walsh, and E. R. Barrack, “Immunohistochemical study of androgen receptors in metastatic prostate cancer: comparison of receptor content and response to hormonal therapy,” Cancer, vol. 67, no. 12, pp. 3057–3064, 1991. View at Scopus
  8. S. M. Henshall, D. I. Quinn, C. S. Lee et al., “Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer,” Cancer Research, vol. 61, no. 2, pp. 423–427, 2001. View at Scopus
  9. C. Ricciardelli, C. S. Choong, G. Buchanan et al., “Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease,” Prostate, vol. 63, no. 1, pp. 19–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. C. D. Chen, D. S. Welsbie, C. Tran, et al., “Molecular determinants of resistance to antiandrogen therapy,” Nature Medicine, vol. 10, no. 1, pp. 33–39, 2004. View at Publisher · View at Google Scholar
  11. S. Reddy, M. Shapiro, R. Morton, and O. W. Brawley, “Prostate cancer in black and white Americans,” Cancer and Metastasis Reviews, vol. 22, no. 1, pp. 83–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Ross, L. Bernstein, and H. Judd, “Serum testosterone levels in healthy young black and white men,” Journal of the National Cancer Institute, vol. 76, no. 1, pp. 45–48, 1986. View at Scopus
  13. L. Ellis and H. Nyborg, “Racial/ethnic variations in male testosterone levels: a probable contributor to group differences in health,” Steroids, vol. 57, no. 2, pp. 72–75, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. K. E. Gaston, D. Kim, S. Singh, O. H. Ford, and J. L. Mohler, “Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer,” Journal of Urology, vol. 170, no. 3, pp. 990–993, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. K. V. Reichardt, N. Makridakis, B. E. Henderson, M. C. Yu, M. C. Pike, and R. K. Ross, “Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk,” Cancer Research, vol. 55, no. 18, pp. 3973–3975, 1995. View at Scopus
  16. N. M. Makridakis, R. K. Ross, M. C. Pike et al., “Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA,” Lancet, vol. 354, no. 9183, pp. 975–978, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Edwards, H. A. Hammond, L. Jin, C. T. Caskey, and R. Chakraborty, “Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups,” Genomics, vol. 12, no. 2, pp. 241–253, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. N. L. Chamberlain, E. D. Driver, and R. L. Miesfeld, “The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function,” Nucleic Acids Research, vol. 22, no. 15, pp. 3181–3186, 1994. View at Scopus
  19. O. Sartor, Q. Zheng, and J. A. Eastham, “Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer,” Urology, vol. 53, no. 2, pp. 378–380, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. Irvine, M. C. Yu, R. K. Ross, and G. A. Coetzee, “The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer,” Cancer Research, vol. 55, no. 9, pp. 1937–1940, 1995. View at Scopus
  21. E. Giovannucci, M. J. Stampfer, K. Krithivas et al., “The CAG repeat within the androgen receptor gene and its relationship to prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3320–3333, 1997.
  22. S. A. Ingles, R. K. Ross, M. C. Yu et al., “Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor,” Journal of the National Cancer Institute, vol. 89, no. 2, pp. 166–170, 1997. View at Scopus
  23. E. A. Platz, E. Giovannucci, D. M. Dahl et al., “The androgen receptor gene GGN microsatellite and prostate cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 5, pp. 379–384, 1998. View at Scopus
  24. Y. P. Yu, D. Landsittel, L. Jing et al., “Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy,” Journal of Clinical Oncology, vol. 22, no. 14, pp. 2790–2799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Luo, D. J. Duggan, Y. Chen et al., “Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling,” Cancer Research, vol. 61, no. 12, pp. 4683–4688, 2001. View at Scopus
  26. J. B. Welsh, L. M. Sapinoso, A. I. Su et al., “Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer,” Cancer Research, vol. 61, no. 16, pp. 5974–5978, 2001. View at Scopus
  27. J. Lapointe, C. Li, J. P. Higgins, et al., “Gene expression profiling identifies clinically relevant subtypes of prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 811–816, 2004. View at Publisher · View at Google Scholar
  28. A. J. Stephenson, A. Smith, M. W. Kattan et al., “Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy,” Cancer, vol. 104, no. 2, pp. 290–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Singh, P. G. Febbo, K. Ross et al., “Gene expression correlates of clinical prostate cancer behavior,” Cancer Cell, vol. 1, no. 2, pp. 203–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Nanni, V. Benvenuti, A. Grasselli et al., “Endothelial NOS, estrogen receptor β, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1093–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. K. Markert, H. Mizuno, A. Vazquez, and A. J. Levine, “Molecular classification of prostate cancer using curated expression signatures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 21276–21281, 2011. View at Publisher · View at Google Scholar
  32. T. A. Wallace, R. L. Prueitt, M. Yi et al., “Tumor immunobiological differences in prostate cancer between African-American and European-American men,” Cancer Research, vol. 68, no. 3, pp. 927–936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. R. Reams, D. Agrawal, M. B. Davis et al., “Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study,” Infectious Agents and Cancer, vol. 4, supplement 1, article S3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Ngan, E. A. Stronach, A. Photiou, J. Waxman, S. Ali, and L. Buluwela, “Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells,” Oncogene, vol. 28, no. 19, pp. 2051–2063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. B. D. Wang, C. L. B. Kline, D. M. Pastor et al., “Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NFκB and microRNA network,” Molecular Cancer, vol. 9, article 98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Teramoto, M. D. Castellone, R. L. Malek et al., “Autocrine activation of an osteopontin-CD44-Rac pathway enhances invasion and transformation by H-RasV12,” Oncogene, vol. 24, no. 3, pp. 489–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics International, vol. 11, pp. 36–42, 2004.
  38. C. D. House, C. J. Vaske, A. M. Schwartz et al., “Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion,” Cancer Research, vol. 70, no. 17, pp. 6957–6967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Fujimoto, S. Yeh, H. Y. Kang et al., “Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate,” The Journal of Biological Chemistry, vol. 274, no. 12, pp. 8316–8321, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Miyoshi, H. Ishiguro, H. Uemura et al., “Expression of AR associated protein 55 (ARA55) and androgen receptor in prostate cancer,” Prostate, vol. 56, no. 4, pp. 280–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Wu, T. L. Foreman, C.W. Gregory, et al., “Protein kinase cepsilon has the potential to advance the recurrence of human prostate cancer,” Cancer Research, vol. 62, no. 8, pp. 2423–2429, 2002.
  43. M. Garcia-Marcos, P. Ghosh, and M. G. Farquhar, “Molecular basis of a novel oncogenic mutation in GNAO1,” Oncogene, vol. 30, no. 23, pp. 2691–2696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. E. R. Sharlow, K. V. Giridhar, C. R. LaValle et al., “Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone,” The Journal of Biological Chemistry, vol. 283, no. 48, pp. 33516–33526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Alur, M. M. Nguyen, S. E. Eggener et al., “Suppressive roles of calreticulin in prostate cancer growth and metastasis,” American Journal of Pathology, vol. 175, no. 2, pp. 882–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Korenchuk, J. E. Lehr, L. McLean et al., “VCaP, a cell-based model system of human prostate cancer,” In Vivo, vol. 15, no. 2, pp. 163–168, 2001. View at Scopus
  47. S. Koochekpour, G. A. Maresh, A. Katner et al., “Establishment and characterization of a primary androgen-responsive African-American prostate cancer cell line, E006AA,” Prostate, vol. 60, no. 2, pp. 141–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. N. M. Navone, M. Olive, M. Ozen et al., “Establishment of two human prostate cancer cell lines derived from a single bone metastasis,” Clinical Cancer Research, vol. 3, no. 12 I, pp. 2493–2500, 1997. View at Scopus
  49. K. R. Chng, C. W. Chang, S. K. Tan, et al., “A transcriptional repressor co-regulatory network governing androgen response in prostate cancers,” The EMBO Journal, vol. 31, no. 12, pp. 2810–2823, 2012. View at Publisher · View at Google Scholar
  50. R. A. S. Hemat, Principles of Orthomolecularism, Urotext, 2004.
  51. H. Touge, H. Chikumi, T. Igishi et al., “Diverse activation states of RhoA in human lung cancer cells: contribution of G protein coupled receptors,” International Journal of Oncology, vol. 30, no. 3, pp. 709–715, 2007. View at Scopus
  52. S. Wee, D. Wiederschain, S. M. Maira et al., “PTEN-deficient cancers depend on PIK3CB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13057–13062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. R. J. Crowder, C. Phommaly, Y. Tao et al., “PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer,” Cancer Research, vol. 69, no. 9, pp. 3955–3962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. T. Abraham, M. A. Kuriakose, P. G. Sacks et al., “Motility-related proteins as markers for head and neck squamous cell cancer,” Laryngoscope, vol. 111, no. 7, pp. 1285–1289, 2001. View at Scopus
  55. T. Kamai, K. Arai, S. Sumi et al., “The rho/rho-kinase pathway is involved in the progression of testicular germ cell tumour,” British Journal of Urology International, vol. 89, no. 4, pp. 449–453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. J. C. Hodge, J. Bub, S. Kaul, A. Kajdacsy-Balla, and P. F. Lindholm, “Requirement of RhoA activity for increased nuclear factor κB activity and PC-3 human prostate cancer cell invasion,” Cancer Research, vol. 63, no. 6, pp. 1359–1364, 2003. View at Scopus
  57. Y. S. Hwang, J. C. Hodge, N. Sivapurapu, and P. F. Lindholm, “Lysophosphatidic acid stimulates PC-3 prostate cancer cell matrigel invasion through activation of RhoA and NF-κB activity,” Molecular Carcinogenesis, vol. 45, no. 7, pp. 518–529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Zhou, M. T. Ling, T. Kin-Wah Lee, K. Man, X. Wang, and Y. C. Wong, “FTY720, a fungus metabolite, inhibits invasion ability of androgen-independent prostate cancer cells through inactivation of RhoA-GTPase,” Cancer Letters, vol. 233, no. 1, pp. 36–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Zheng, A. Iwase, R. Shen et al., “Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase,” Oncogene, vol. 25, no. 44, pp. 5942–5952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. D. L. Greenberg, G. J. Mize, and T. K. Takayama, “Protease-activated receptor mediated RhoA signaling and cytoskeletal reorganization in LNCaP cells,” Biochemistry, vol. 42, no. 3, pp. 702–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. K. F. Decker, D. Zheng, Y. He, T. Bowman, J. R. Edwards, and L. Jia, “Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions,” Nucleic Acids Research, vol. 40, no. 21, pp. 10765–10779, 2012. View at Publisher · View at Google Scholar
  62. D. A. Hosack, G. Dennis, B. T. Sherman, H. C. Lane, and R. A. Lempicki, “Identifying biological themes within lists of genes with EASE,” Genome Biology, vol. 4, no. 10, article R70, 2003. View at Scopus
  63. R. M. Kypta and J. Waxman, “Wnt/beta-catenin signalling in prostate cancer,” Nature Reviews Urology, vol. 9, pp. 418–428, 2012. View at Publisher · View at Google Scholar
  64. D. Gioeli, J. W. Mandell, G. R. Petroni, H. F. Frierson, and M. J. Weber, “Activation of mitogen-activated protein kinase associated with prostate cancer progression,” Cancer Research, vol. 59, no. 2, pp. 279–284, 1999. View at Scopus
  65. D. Gioeli, “Signal transduction in prostate cancer progression,” Clinical Science, vol. 108, no. 4, pp. 293–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. D. J. Mulholland, S. Dedhar, H. Wu, and C. C. Nelson, “PTEN and GSK3β: key regulators of progression to androgen-independent prostate cancer,” Oncogene, vol. 25, no. 3, pp. 329–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. M. M. Shen and C. Abate-Shen, “Pten inactivation and the emergence of androgen-independent prostate cancer,” Cancer Research, vol. 67, no. 14, pp. 6535–6538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Wen, M. C. T. Hu, K. Makino et al., “HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway,” Cancer Research, vol. 60, no. 24, pp. 6841–6845, 2000. View at Scopus
  69. C. I. Truica, S. Byers, and E. P. Gelmann, “β-catenin affects androgen receptor transcriptional activity and ligand specificity,” Cancer Research, vol. 60, no. 17, pp. 4709–4713, 2000. View at Scopus
  70. D. J. Mulholland, H. Cheng, K. Reid, P. S. Rennie, and C. C. Nelson, “The androgen receptor can promote β-catenin nuclear translocation independently of adenomatous polyposis coli,” The Journal of Biological Chemistry, vol. 277, no. 20, pp. 17933–17943, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. D. J. Mulholland, J. T. Read, P. S. Rennie, M. E. Cox, and C. C. Nelson, “Functional localization and competition between the androgen receptor and T-cell factor for nuclear β-catenin: a means for inhibition of the Tcf signaling axis,” Oncogene, vol. 22, no. 36, pp. 5602–5613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Chen, N. Shukeir, A. Potti et al., “Up-regulation of Wnt-1 and β-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications,” Cancer, vol. 101, no. 6, pp. 1345–1356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Culig, A. Hobisch, M. V. Cronauer et al., “Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor,” Cancer Research, vol. 54, no. 20, pp. 5474–5478, 1994. View at Scopus
  74. G. Wang, S. J. M. Jones, M. A. Marra, and M. D. Sadar, “Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells,” Oncogene, vol. 25, no. 55, pp. 7311–7323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. E. Massie, A. Lynch, A. Ramos-Montoya et al., “The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis,” The EMBO Journal, vol. 30, no. 13, pp. 2719–2733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Lin, J. Wang, X. Hong et al., “Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor,” PLoS ONE, vol. 4, no. 8, Article ID e6589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. C. E. Massie, B. Adryan, N. L. Barbosa-Morais et al., “New androgen receptor genomic targets show an interaction with the ETS1 transcription factor,” EMBO Reports, vol. 8, no. 9, pp. 871–878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. L. J. Schmidt, K. Duncan, N. Yadav, et al., “RhoA as a mediator of clinically relevant androgen action in prostate cancer cells,” Molecular Endocrinology, vol. 26, no. 5, pp. 716–735.
  79. R. B. Nagle, J. D. Knox, C. Wolf, G. T. Bowden, and A. E. Cress, “Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma,” Journal of Cellular Biochemistry, vol. 56, no. 19, pp. 232–237, 1994. View at Scopus
  80. J. D. Knox, A. E. Cress, V. Clark et al., “Differential expression of extracellular matrix molecules and the α6-integrins in the normal and neoplastic prostate,” American Journal of Pathology, vol. 145, no. 1, pp. 167–174, 1994. View at Scopus
  81. S. J. Murant, J. Handley, M. Stower, N. Reid, O. Cussenot, and N. J. Maitland, “Co-ordinated changes in expression of cell adhesion molecules in prostate cancer,” European Journal of Cancer A, vol. 33, no. 2, pp. 263–271, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Q. Zheng, A. S. Woodard, M. Fornaro, G. Tallini, and L. R. Languino, “Prostatic carcinoma cell migration via α(v)β3 integrin is modulated by a focal adhesion kinase pathway,” Cancer Research, vol. 59, no. 7, pp. 1655–1664, 1999. View at Scopus
  83. I. P. Gorlov, J. Byun, O. Y. Gorlova, A. M. Aparicio, E. Efstathiou, and C. J. Logothetis, “Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data,” BMC Medical Genomics, vol. 2, article 48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. Q. Zhu, H. Youn, J. Tang et al., “Phosphoinositide 3-OH kinase p85α and p110β are essential for androgen receptor transactivation and tumor progression in prostate cancers,” Oncogene, vol. 27, no. 33, pp. 4569–4579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Jia, Z. Liu, S. Zhang et al., “Essential roles of PI(3)K-p110β in cell growth, metabolism and tumorigenesis,” Nature, vol. 454, no. 7205, pp. 776–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. K. M. Hill, S. Kalifa, J. R. Das et al., “The role of PI 3-kinase p110β in AKT signally, cell survival, and proliferation in human prostate cancer cells,” Prostate, vol. 70, no. 7, pp. 755–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. N. El-Hashemite, H. Zhang, V. Walker, K. M. Hoffmeister, and D. J. Kwiatkowski, “Perturbed IFN-γ-Jak-signal transducers and activators of transcription signaling in tuberous sclerosis mouse models: synergistic effects of rapamycin-IFN-γ treatment,” Cancer Research, vol. 64, no. 10, pp. 3436–3443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Buettner, L. B. Mora, and R. Jove, “Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention,” Clinical Cancer Research, vol. 8, no. 4, pp. 945–954, 2002. View at Scopus
  89. J. J. O'Shea, “Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet?” Immunity, vol. 7, no. 1, pp. 1–11, 1997. View at Publisher · View at Google Scholar · View at Scopus
  90. O. Cochet, C. Frelin, J. F. Peyron, and V. Imbert, “Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival,” Cellular Signalling, vol. 18, no. 4, pp. 449–455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. G. Patterson, S. Wei, X. Chen et al., “Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells,” Oncogene, vol. 25, no. 45, pp. 6113–6122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. L. D. Wood, D. W. Parsons, S. Jones et al., “The genomic landscapes of human breast and colorectal cancers,” Science, vol. 318, no. 5853, pp. 1108–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Jones, X. Zhang, D. W. Parsons et al., “Core signaling pathways in human pancreatic cancers revealed by global genomic analyses,” Science, vol. 321, no. 5897, pp. 1801–1806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Ding, G. Getz, D. A. Wheeler et al., “Somatic mutations affect key pathways in lung adenocarcinoma,” Nature, vol. 455, no. 7216, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. R. McLendon, A. Friedman, D. Bigner et al., “Comprehensive genomic characterization defines human glioblastoma genes and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. P. S. Hammerman, D. N. Hayes, M. D. Wilkerson, et al., “Comprehensive genomic characterization of squamous cell lung cancers,” Nature, vol. 489, no. 7417, pp. 519–525, 2012. View at Publisher · View at Google Scholar