About this Journal Submit a Manuscript Table of Contents
Prostate Cancer
Volume 2014 (2014), Article ID 868269, 9 pages
http://dx.doi.org/10.1155/2014/868269
Research Article

DWI of Prostate Cancer: Optimal -Value in Clinical Practice

1Department of Diagnostic Imaging and Interventional Radiology, Molecular Imaging and Radiotherapy, Fondazione Policlinico “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
2Department of Biopathology and Image Diagnostics, Fondazione Policlinico “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy

Received 31 October 2013; Revised 3 January 2014; Accepted 3 January 2014; Published 18 February 2014

Academic Editor: Cristina Magi-Galluzzi

Copyright © 2014 Guglielmo Manenti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Andriole, E. D. Crawford, R. L. Grubb et al., “Mortality results from a randomized prostate-cancer screening trial,” The New England Journal of Medicine, vol. 360, no. 13, pp. 1310–1319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. H. Schröder, J. Hugosson, M. J. Roobol et al., “Screening and prostatecancer mortality in a randomized European study,” The New England Journal of Medicine, vol. 360, no. 13, pp. 1320–1328, 2009. View at Publisher · View at Google Scholar
  4. B. Spajic, H. Eupic, D. Tomas, G. Stimac, B. Kruslin, and O. Kraus, “The incidence of hyperechoic prostate cancer in transrectal ultrasound-guided biopsy specimens,” Urology, vol. 70, no. 4, pp. 734–737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. K. Bittencourt, J. O. Barentsz, L. C. D. de Miranda, and E. L. Gasparetto, “Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason grades than TRUS-guided biopsies in peripheral zone tumours,” European Radiology, vol. 22, no. 2, pp. 468–475, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. E. U. Saritas, J. H. Lee, and D. G. Nishimura, “SNR dependence of optimal parameters for apparent diffusion coefficient measurements,” IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 424–437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. O. Barentsz, J. Richenberg, R. Clements et al., “ESUR prostate MR guidelines 2012,” European Radiology, vol. 22, no. 4, pp. 746–757, 2012. View at Publisher · View at Google Scholar
  8. B. Turkbey, V. P. Shah, Y. Pang et al., “Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images?” Radiology, vol. 258, no. 2, pp. 488–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. A. Vargas, O. Akin, T. Franiel et al., “Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness,” Radiology, vol. 259, no. 3, pp. 775–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. K. Kim, B. K. Park, and B. Kim, “High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2,” The American Journal of Roentgenology, vol. 194, no. 1, pp. W33–W37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Koo, C. K. Kim, D. Choi, B. K. Park, G. Y. Kwon, and B. Kim, “Diffusion-weighted magnetic resonance imaging for the evaluation of prostate cancer: optimal B value at 3T,” Korean Journal of Radiology, vol. 14, no. 1, pp. 61–69, 2013. View at Publisher · View at Google Scholar
  12. K. Katahira, T. Takahara, T. C. Kwee et al., “Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation,” European Radiology, vol. 21, no. 1, pp. 188–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. Rosenkrantz, N. Hindman, R. P. Lim et al., “Diffusion-weighted imaging of the prostate: comparison of b1000 and b2000 image sets for index lesion detection,” Journal of Magnetic Resonance Imaging, vol. 38, no. 3, pp. 694–700, 2013. View at Publisher · View at Google Scholar
  14. Y. Ohgiya, J. Suyama, N. Seino, et al., “Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer,” Clinical Imaging, vol. 36, no. 5, pp. 526–531, 2012. View at Publisher · View at Google Scholar
  15. Y. Ueno, S. Takahashi, K. Kitajima et al., “Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis,” European Radiology, vol. 23, no. 12, pp. 3509–3516, 2013. View at Publisher · View at Google Scholar
  16. T. Metens, D. Miranda, J. Absil, and C. Matos, “What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T?” European Radiology, vol. 22, no. 3, pp. 703–709, 2012. View at Publisher · View at Google Scholar
  17. K. Kitajima, Y. Kaji, K. Kuroda, and K. Sugimura, “High b-value diffusion-weighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio,” Magnetic Resonance in Medical Sciences, vol. 7, no. 2, pp. 93–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Kitajima, S. Takahashi, Y. Ueno et al., “Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm2) and standard high b-value (1000 s/mm2),” Journal of Magnetic Resonance Imaging, vol. 36, no. 1, pp. 198–205, 2012. View at Publisher · View at Google Scholar
  19. A. B. Rosenkrantz, X. Kong, B. E. Niver et al., “Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map,” The American Journal of Roentgenology, vol. 196, no. 1, pp. 123–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Hambrock, D. M. Somford, H. J. Huisman et al., “Relationship between apparent diffusion coefficients at 3.0-T MR imaging and gleason grade in peripheral zone prostate cancer,” Radiology, vol. 259, no. 2, pp. 453–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Sato, S. Naganawa, T. Nakamura et al., “Differentiation of noncancerous tissue and cancer lesion by apparent diffusion coefficient values in transition and peripheral zones of the prostate,” Journal of Magnetic Resonance Imaging, vol. 21, no. 3, pp. 258–262, 2005. View at Publisher · View at Google Scholar · View at Scopus