About this Journal Submit a Manuscript Table of Contents
Parkinson’s Disease
Volume 2013 (2013), Article ID 572134, 9 pages
http://dx.doi.org/10.1155/2013/572134
Research Article

Exploring Outcome Measures for Exercise Intervention in People with Parkinson’s Disease

1Department of Neurology, Oregon Health and Science University, Portland, OR 97239-3098, USA
2Parkinson Center of Oregon, OP32, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
3Department of Rehabilitation Services, Oregon Health and Science University, Portland, OR 97239-3098, USA

Received 12 February 2013; Accepted 28 March 2013

Academic Editor: Terry Ellis

Copyright © 2013 L. A. King et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Ebersbach, A. Ebersbach, D. Edler et al., “Comparing exercise in Parkinson's disease—the Berlin LSVT BIG study,” Movement Disorders, vol. 25, no. 12, pp. 1902–1908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. Earhart and A. J. Williams, “Treadmill training for individuals with Parkinson disease,” Physical Therapy, vol. 92, pp. 893–897, 2012.
  3. V. A. Goodwin, S. H. Richards, R. S. Taylor, A. H. Taylor, and J. L. Campbell, “The effectiveness of exercise interventions for people with Parkinson's disease: a systematic review and meta-analysis,” Movement Disorders, vol. 23, no. 5, pp. 631–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Li, P. Harmer, K. J. Fisher et al., “Tai Chi and fall reductions in older adults: a randomized controlled trial,” Journals of Gerontology A, vol. 60, no. 2, pp. 187–194, 2005. View at Scopus
  5. L. E. Dibble, O. Addison, and E. Papa, “The effects of exercise on balance in persons with parkinson's disease: a systematic review across the disability spectrum,” Journal of Neurologic Physical Therapy, vol. 33, no. 1, pp. 14–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. E. Dibble, T. F. Hale, R. L. Marcus, J. P. Gerber, and P. C. LaStayo, “High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson's disease: a preliminary study,” Parkinsonism and Related Disorders, vol. 15, no. 10, pp. 752–757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. Earhart, “Dance as therapy for individuals with Parkinson disease,” European Journal of Physical and Rehabilitation Medicine, vol. 45, pp. 231–238, 2009.
  8. T. Herman, N. Giladi, L. Gruendlinger, and J. M. Hausdorff, “Six weeks of Intensive treadmill training improves gait and quality of life in patients with Parkinson's disease: a pilot study,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 9, pp. 1154–1158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. H. J. Keus, B. R. Bloem, E. J. M. Hendriks, A. B. Bredero-Cohen, and M. Munneke, “Evidence-based analysis of physical therapy in Parkinson's disease with recommendations for practice and research,” Movement Disorders, vol. 22, no. 4, pp. 451–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Protas, K. Mitchell, A. Williams, H. Qureshy, K. Caroline, and E. C. Lai, “Gait and step training to reduce falls in Parkinson's disease,” NeuroRehabilitation, vol. 20, no. 3, pp. 183–190, 2005. View at Scopus
  11. M. Schenkman, T. M. Cutson, M. Kuchibhatla et al., “Exercise to improve spinal flexibility and function for people with Parkinson's disease: a randomized, controlled trial,” Journal of the American Geriatrics Society, vol. 46, no. 10, pp. 1207–1216, 1998. View at Scopus
  12. B. G. Farley and G. F. Koshland, “Training BIG to move faster: the application of the speed-amplitude relation as a rehabilitation strategy for people with Parkinson's disease,” Experimental Brain Research, vol. 167, no. 3, pp. 462–467, 2005. View at Scopus
  13. L. Harvey, “But is the outcome meaningful? JNPT'S recommendations for reporting results of controlled trials,” Journal of Neurologic Physical Therapy, vol. 35, no. 3, pp. 103–104, 2011. View at Publisher · View at Google Scholar
  14. P. C. Garcia, C. C. Real, A. F. Ferreira, S. R. Alouche, L. R. Britto, and R. S. Pires, “Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain,” Brain Research, vol. 1456, pp. 36–48, 2012.
  15. J. E. Black, K. R. Isaacs, B. J. Anderson, A. A. Alcantara, and W. T. Greenough, “Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 14, pp. 5568–5572, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. N. E. Allen, C. Sherrington, S. S. Paul, and C. G. Canning, “Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training,” Movement Disorders, vol. 26, no. 9, pp. 1605–1615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Tomlinson, S. Patel, C. Meek, et al., “Physiotherapy versus placebo or no intervention in Parkinson’s disease (Review),” Movement Disorders, vol. 26, pp. 1605–1615, 2011.
  18. L. A. King, M. Mancini, K. Priest, et al., “Do clinical scales of balance reflect turning abnormalities in people with Parkinson's disease?” Journal of Neurologic Physical Therapy, vol. 36, pp. 25–31, 2012.
  19. M. Mancini, L. King, A. Salarian, L. Holstrom, J. McNames, and F. Horak, “Mobility lab to assess Balance and Gait with Synchronized Body-worn sensors,” Journal of Bioengineering and Biomedical Science, vol. 1, 2 pages, 2012.
  20. W. H. O. (WHO), “International classification of functioning, disability and health: ICF,” in WHO, Geneva, Switzerland, 2003. View at Scopus
  21. L. A. King and F. B. Horak, “Delaying mobility disability in people with parkinson disease using a sensorimotor agility exercise program,” Physical Therapy, vol. 89, no. 4, pp. 384–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Argue, Parkinson's Disease and the Art of Moving, New Harbinger Publications, 2000.
  23. C. Jenkinson, R. Fitzpatrick, V. Peto, R. Greenhall, and N. Hyman, “The Parkinson's disease questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score,” Age and Ageing, vol. 26, no. 5, pp. 353–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. L. E. Powell and A. M. Myers, “The Activities-specific Balance Confidence (ABC) scale,” Journals of Gerontology A, vol. 50, no. 1, pp. M28–M34, 1995. View at Scopus
  25. S. Fahn and R. Elton, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson Diseases, S. Fahn, D. Marsden, and D. Calne, Eds., pp. 153–163, Macmillan, London, UK, 1987.
  26. A. M. Damiano, C. Snyder, B. Strausser, and M. K. Willian, “A review of health-related quality-of-life concepts and measures for Parkinson's disease,” Quality of Life Research, vol. 8, no. 3, pp. 235–243, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Peto, C. Jenkinson, and R. Fitzpatrick, “PDQ-39: a review of the development, validation and application of a Parkinson's Disease quality of life questionnaire and its associated measures,” Journal of Neurology, Supplement, vol. 245, no. 1, pp. S10–S14, 1998. View at Scopus
  28. T. Steffen and M. Seney, “Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-Item Short-Form Health Survey, and the Unified Parkinson Disease Rating Scale in people with parkinsonism,” Physical Therapy, vol. 88, no. 6, pp. 733–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Franchignoni, F. Horak, M. Godi, A. Nardone, and A. Giordano, “Using psychometric techniques to improve the balance evaluation systems test: the mini-bestest,” Journal of Rehabilitation Medicine, vol. 42, no. 4, pp. 323–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. O. Berg, S. L. Wood-Dauphinee, J. I. Williams, and B. Maki, “Measuring balance in the elderly: validation of an instrument,” Canadian Journal of Public Health, vol. 83, supplement 2, pp. S7–S11, 1992. View at Scopus
  31. A. Salarian, F. B. Horak, C. Zampieri, P. Carlson-Kuhta, J. G. Nutt, and K. Aminian, “ITUG, a sensitive and reliable measure of mobility,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 3, pp. 303–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Mancini, A. Salarian, P. Carlson-Kuhta, et al., “ISway: a sensitive, valid and reliable measure of postural control,” Journal of Neuroengineering and Rehabilitation, vol. 9, 59 pages, 2012.
  33. MATLAB, Version 7.10.0, The MathWorks, Natick, Mass, USA, 2010.
  34. APDM, Mobility Lab, Portland, Ore, USA, 2012.
  35. R. Moe-Nilssen, E. Nordin, L. Lundin-Olsson, et al., “Criteria for evaluation of measurement properties of clinical balance measures for use in fall prevention studies,” Journal of Evaluation in Clinical Practice, vol. 14, pp. 236–240, 2008.
  36. B. Dobkin, D. Apple, H. Barbeau et al., “Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI,” Neurology, vol. 66, no. 4, pp. 484–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. W. Duncan, K. J. Sullivan, A. L. Behrman et al., “Body-weight—supported treadmill rehabilitation after stroke,” The New England Journal of Medicine, vol. 364, no. 21, pp. 2026–2036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. B. H. Dobkin and P. W. Duncan, “Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?” Neurorehabilitation and Neural Repair, vol. 26, pp. 308–317, 2012.
  39. R. P. Duncan and G. M. Earhart, “Randomized controlled trial of community-based dancing to modify disease progression in Parkinson disease,” Neurorehabilitation and Neural Repair, vol. 26, pp. 132–143, 2012.