About this Journal Submit a Manuscript Table of Contents
Physiology Journal
Volume 2013 (2013), Article ID 517838, 7 pages
Clinical Study

Reliability of the Electromechanical Delay Components Assessment during the Relaxation Phase

Department of Biomedical Sciences for Health, University of Milan, Via G. Colombo 71, 20133 Milan, Italy

Received 30 November 2012; Accepted 1 February 2013

Academic Editor: Stephane Perrey

Copyright © 2013 Emiliano Cè et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The study aimed to assess by an electromyographic (EMG), mechanomyographic (MMG), and force-combined approach the electrochemical and mechanical components of the overall electromechanical delay during relaxation (R-EMD). Reliability of the measurements was also assessed. To this purpose, supramaximal tetanic stimulations (50 Hz) were delivered to the gastrocnemius medialis muscle of 17 participants. During stimulations, the EMG, MMG, and force signals were detected, and the time lag between EMG cessation and the beginning of force decay ( EMG-F, as temporal indicators of the electrochemical events) and from the initial force decrease to the largest negative peak of MMG signal during relaxation ( F-MMG, as temporal indicators of the mechanical events) was calculated, together with overall R-EMD duration (from EMG cessation to the largest MMG negative peak during relaxation). Peak force (pF), half relaxation time (HRT), and MMG peak-to-peak during the relaxation phase (R-MMG p-p) were also calculated. Test-retest reliability was assessed by Intraclass Correlation Coefficient (ICC). With a total R-EMD duration of 96.9 ± 1.9 ms, EMG-F contributed for about 24% (23.4 ± 2.7 ms) while F-MMG for about 76% (73.5 ± 3.2 ms). Reliability of the measurements was high for all variables. Our findings show that the main contributor to R-EMD is represented by the mechanical components (series elastic components and muscle fibres behaviour), with a high reliability level for this type of approach.