About this Journal Submit a Manuscript Table of Contents
Pulmonary Medicine
Volume 2012 (2012), Article ID 196194, 10 pages
http://dx.doi.org/10.1155/2012/196194
Review Article

A Relationship between Epithelial Maturation, Bronchopulmonary Dysplasia, and Chronic Obstructive Pulmonary Disease

1Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet and Lung Research Laboratory, L4:01, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
2Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada L8S 4K1

Received 7 October 2012; Revised 29 November 2012; Accepted 29 November 2012

Academic Editor: N. Ambrosino

Copyright © 2012 Abraham B. Roos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Jobe, “Lung maturation: the survival miracle of very low birth weight infants,” Pediatrics and Neonatology, vol. 51, no. 1, pp. 7–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. M. Deakins, “Bronchopulmonary dysplasia,” Respiratory Care, vol. 54, no. 9, pp. 1252–1262, 2009. View at Scopus
  3. S. M. Aukland, T. Halvorsen, K. R. Fosse, A. K. Daltveit, and K. Rosendahl, “High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study,” American Journal of Roentgenology, vol. 187, no. 4, pp. 1012–1018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Fawke, S. Lum, J. Kirkby et al., “Lung function and respiratory symptoms at 11 years in children born extremely preterm,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 2, pp. 237–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Gough, D. Spence, M. Linden, et al., “General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review,” Chest, vol. 141, no. 6, pp. 1554–1567, 2012.
  6. B. Källén, O. Finnström, K. Nygren, and P. Otterblad Olausson, “Association between preterm birth and intrauterine growth retardation and child asthma,” European Respiratory Journal. In press.
  7. A. Bush, “COPD: a pediatric disease,” Journal of Chronic Obstructive Pulmonary Disease, vol. 5, no. 1, pp. 53–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. W. Doyle, B. Faber, C. Callanan, N. Freezer, G. W. Ford, and N. M. Davis, “Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence,” Pediatrics, vol. 118, no. 1, pp. 108–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Wong, A. N. Lees, J. Louw et al., “Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia,” European Respiratory Journal, vol. 32, no. 2, pp. 321–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. L. E. Vrijlandt, J. Gerritsen, H. M. Boezen, R. G. Grevink, and E. J. Duiverman, “Lung function and exercise capacity in young adults born prematurely,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 8, pp. 890–896, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Didon, A. B. Roos, G. P. Elmberger, F. J. Gonzalez, and M. Nord, “Lung-specific inactivation of CCAAT/enhancer binding protein α causes a pathological pattern characteristic of COPD,” European Respiratory Journal, vol. 35, no. 1, pp. 186–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Coalson, “Pathology of bronchopulmonary dysplasia,” Seminars in Perinatology, vol. 30, no. 4, pp. 179–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Gien and J. P. Kinsella, “Pathogenesis and treatment of bronchopulmonary dysplasia,” Current Opinion in Pediatrics, vol. 23, no. 3, pp. 305–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Hayes Jr., J. T. Meadows, B. S. Murphy, D. J. Feola, L. A. Shook, and H. O. Ballard, “Pulmonary function outcomes in bronchopulmonary dysplasia through childhood and into adulthood: implications for primary care,” Primary Care Respiratory Journal, vol. 20, no. 2, pp. 128–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Maeda, V. Davé, and J. A. Whitsett, “Transcriptional control of lung morphogenesis,” Physiological Reviews, vol. 87, no. 1, pp. 219–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Smith, K. O. McKay, P. P. van Asperen, H. Selvadurai, and D. A. Fitzgerald, “Normal development of the lung and premature birth,” Paediatric Respiratory Reviews, vol. 11, no. 3, pp. 135–142, 2010. View at Publisher · View at Google Scholar
  17. P. H. Burri, “Fetal and postnatal development of the lung,” Annual Review of Physiology, vol. 46, pp. 617–628, 1984. View at Scopus
  18. P. K. Jeffery and D. Li, “Airway mucosa: secretory cells, mucus and mucin genes,” European Respiratory Journal, vol. 10, no. 7, pp. 1655–1662, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Wong, A. Keating, and T. K. Waddell, “Airway regeneration: the role of the Clara cell secretory protein and the cells that express it,” Cytotherapy, vol. 11, no. 6, pp. 676–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Knight and S. T. Holgate, “The airway epithelium: structural and functional properties in health and disease,” Respirology, vol. 8, no. 4, pp. 432–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. P. L. Leopold, M. J. O'Mahony, X. J. Lian, A. E. Tilley, B. G. Harvey, and R. G. Crystal, “Smoking is associated with shortened airway cilia,” PloS One, vol. 4, no. 12, article e8157, 2009. View at Scopus
  22. R. M. K. W. Lee and H. O'Brodovich, “Airway epithelial damage in premature infants with respiratory failure,” American Review of Respiratory Disease, vol. 137, no. 2, pp. 450–457, 1988. View at Scopus
  23. B. R. Stripp, S. D. Reynolds, C. G. Plopper, I. M. Bøe, and J. Lund, “Pulmonary phenotype of CCSP/UG deficient mice: a consequence of CCSP deficiency or altered clara cell function?” Annals of the New York Academy of Sciences, vol. 923, pp. 202–209, 2000. View at Scopus
  24. Z. Zhang, G. C. Kundu, F. Zheng et al., “Insight into the physiological function(s) of uteroglobin by gene-knockout and antisense-transgenic approaches,” Annals of the New York Academy of Sciences, vol. 923, pp. 210–233, 2000. View at Scopus
  25. P. J. Barth, M. Wolf, and A. Ramaswamy, “Distribution and number of Clara cells in the normal and disturbed development of the human fetal lung,” Pediatric Pathology, vol. 14, no. 4, pp. 637–651, 1994. View at Scopus
  26. P. L. Ramsay, F. J. DeMayo, S. E. Hegemier, M. E. Wearden, C. V. Smith, and S. E. Welty, “Clara cell secretory protein oxidation and expression in premature infants who develop bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 1, pp. 155–161, 2001. View at Scopus
  27. W. Thomas, S. Seidenspinner, N. Kawczyńska-Leda et al., “Clara cell secretory protein in tracheobronchial aspirates and umbilical cord serum of extremely premature infants with systemic inflammation,” Neonatology, vol. 97, no. 3, pp. 228–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Tsoumakidou, I. Bouloukaki, K. Thimaki, N. Tzanakis, and N. M. Siafakas, “Innate immunity proteins in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis,” Experimental Lung Research, vol. 36, no. 6, pp. 373–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. L. Herzog, A. R. Brody, T. V. Colby, R. Mason, and M. C. Williams, “Knowns and unknowns of the alveolus,” Proceedings of the American Thoracic Society, vol. 5, no. 7, pp. 778–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Orgeig, P. S. Hiemstra, E. J. A. Veldhuizen et al., “Recent advances in alveolar biology: evolution and function of alveolar proteins,” Respiratory Physiology and Neurobiology, vol. 173, supplement 1, pp. S43–S54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. T. Benjamin, B. J. Carver, E. J. Plosa et al., “NF-κB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression,” The Journal of Immunology, vol. 185, no. 8, pp. 4896–4903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. S. Blackwell, A. N. Hipps, Y. Yamamoto, et al., “NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis,” The Journal of Immunology, vol. 187, no. 5, pp. 2740–2747, 2011. View at Publisher · View at Google Scholar
  33. D. S. Basseres, E. Levantini, H. Ji, et al., “Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice,” Molecular and Cellular Biology, vol. 26, no. 3, pp. 1109–1123, 2006. View at Publisher · View at Google Scholar
  34. K. Sugahara, K. I. Iyama, T. Kimura et al., “Mice lacking CCAAT/enhancer-binding protein-α show hyperproliferation of alveolar type II cells and increased surfactant protein mRNAs,” Cell and Tissue Research, vol. 306, no. 1, pp. 57–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Wingender, X. Chen, E. Fricke et al., “The TRANSFAC system on gene expression regulation,” Nucleic Acids Research, vol. 29, no. 1, pp. 281–283, 2001. View at Scopus
  36. E. Wingender, H. Karas, and R. Knüppel, “TRANSFAC database as a bridge between sequence data libraries and biological function,” Pacific Symposium on Biocomputing, pp. 477–485, 1997. View at Scopus
  37. P. F. Johnson and S. L. McKnight, “Eukaryotic transcriptional regulatory proteins,” Annual Review of Biochemistry, vol. 58, pp. 799–839, 1989. View at Scopus
  38. S. Akira, H. Isshiki, T. Sugita et al., “A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family,” EMBO Journal, vol. 9, no. 6, pp. 1897–1906, 1990. View at Scopus
  39. S. C. Williams, C. A. Cantwell, and P. F. Johnson, “A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro,” Genes and Development, vol. 5, no. 9, pp. 1553–1567, 1991. View at Scopus
  40. Z. Cao, R. M. Umek, and S. L. McKnight, “Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells,” Genes and Development, vol. 5, no. 9, pp. 1538–1552, 1991. View at Scopus
  41. S. Osada, H. Yamamoto, T. Nishihara, and M. Imagawa, “DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family,” Journal of Biological Chemistry, vol. 271, no. 7, pp. 3891–3896, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Poli, “The role of C/EBP isoforms in the control of inflammatory and native immunity functions,” Journal of Biological Chemistry, vol. 273, no. 45, pp. 29279–29282, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. D. P. Ramji and P. Foka, “CCAAT/enhancer-binding proteins: structure, function and regulation,” Biochemical Journal, vol. 365, part 3, pp. 561–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. B. Roos, T. Berg, J. L. Barton, L. Didon, and M. Nord, “Airway epithelial cell differentiation during lung organogenesis requires C/EBPα and C/EBPβ,” Developmental Dynamics, vol. 241, no. 5, pp. 911–923, 2012. View at Publisher · View at Google Scholar
  45. Y. Xu, C. Saegusa, A. Schehr, S. Grant, J. A. Whitsett, and M. Ikegami, “C/EBPα is required for pulmonary cytoprotection during hyperoxia,” American Journal of Physiology—Lung Cellular and Molecular, vol. 297, no. 2, pp. L286–L298, 2009. View at Publisher · View at Google Scholar
  46. G. Yang, M. D. Hinson, J. E. Bordner et al., “Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 301, no. 2, pp. L187–L196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Sato, Y. Xu, J. A. Whitsett, and M. Ikegami, “CCAAT/enhancer binding protein-α regulates the protease/antiprotease balance required for bronchiolar epithelium regeneration,” Journal of Respiratory Cell and Molecular Biology, vol. 47, no. 4, pp. 454–463, 2012. View at Publisher · View at Google Scholar
  48. P. N. Tsao, S. C. Wei, M. F. Wu et al., “Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development,” Development, vol. 138, no. 16, pp. 3533–3543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. T. J. Cole, J. A. Blendy, A. P. Monaghan et al., “Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation,” Genes and Development, vol. 9, no. 13, pp. 1608–1621, 1995. View at Scopus
  50. M. J. Odom, J. M. Snyder, V. Boggaram, and C. R. Mendelson, “Glucocorticoid regulation of the major surfactant associated protein (SP-A) and its messenger ribonucleic acid and of morphological development of human fetal lung in vitro,” Endocrinology, vol. 123, no. 4, pp. 1712–1720, 1988. View at Scopus
  51. V. Boggaram, M. E. Smith, and C. R. Mendelson, “Regulation of expression of the gene encoding the major surfactant protein (SP-A) in human fetal lung in vitro. Disparate effects of glucocorticoids on transcription and on mRNA stability,” Journal of Biological Chemistry, vol. 264, no. 19, pp. 11421–11427, 1989. View at Scopus
  52. H. G. Liley, R. T. White, R. G. Warr, B. J. Benson, S. Hawgood, and P. L. Ballard, “Regulation of messenger RNAs for the hydrophobic surfactant proteins in human lung,” Journal of Clinical Investigation, vol. 83, no. 4, pp. 1191–1197, 1989. View at Scopus
  53. M. A. O'Reilly, A. F. Gazdar, J. C. Clark et al., “Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 257, no. 6, part 1, pp. L385–L392, 1989. View at Scopus
  54. N. Manwani, S. Gagnon, M. Post et al., “Reduced viability of mice with lung epithelial-specific knockout of glucocorticoid receptor,” American Journal of Respiratory Cell and Molecular Biology, vol. 43, no. 5, pp. 599–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. R. Breed, L. R. Margraf, J. L. Alcorn, and C. R. Mendelson, “Transcription factor C/EBPδ in fetal lung: developmental regulation and effects of cyclic adenosine 3,5-monophosphate and glucocorticoids,” Endocrinology, vol. 138, no. 12, pp. 5527–5534, 1997. View at Scopus
  56. M. Karin, “New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable?” Cell, vol. 93, no. 4, pp. 487–490, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Berg, T. N. Cassel, P. E. Schwarze, and M. Nord, “Glucocorticoids regulate the CCSP and CYP2B1 promoters via C/EBPβ and δ in lung cells,” Biochemical and Biophysical Research Communications, vol. 293, no. 3, pp. 907–912, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Flodby, C. Barlow, H. Kylefjord, L. Ährlund-Richter, and K. G. Xanthopoulos, “Increased hepatic cell proliferation and lung abnormalities in mice deficient in CCAAT/enhancer binding protein α,” Journal of Biological Chemistry, vol. 271, no. 40, pp. 24753–24760, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Berg, L. Didon, J. Barton, O. Andersson, and M. Nord, “Glucocorticoids increase C/EBPbeta activity in the lung epithelium via phosphorylation,” Biochemical and Biophysical Research Communications, vol. 334, no. 2, pp. 638–645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Berg, L. Didon, and M. Nord, “Ectopic expression of C/EBPα in the lung epithelium disrupts late lung development,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 291, no. 4, pp. L683–L693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Zhang, S. J. Garber, Z. Cui et al., “The angiogenic factor midkine is regulated by dexamethasone and retinoic acid during alveolarization and in alveolar epithelial cells,” Respiratory Research, vol. 10, p. 77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. H. Qu, Z. C. Yang, L. Chen, Z. D. Lv, M. J. Yi, and N. Ran, “Inhibition airway remodeling and transforming growth factor-beta1/Smad signaling pathway by astragalus extract in asthmatic mice,” International Journal of Molecular Medicine, vol. 29, no. 4, pp. 564–568, 2012.
  63. M. B. Hershenson, M. D. Kelleher, E. T. Naureckas et al., “Hyperoxia increases airway cell S-phase traversal in immature rats in vivo,” American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 3, pp. 296–303, 1994. View at Scopus
  64. D. Denis, M. J. Fayon, P. Berger et al., “Prolonged moderate hyperoxia induces hyperresponsiveness and airway inflammation in newborn rats,” Pediatric Research, vol. 50, no. 4, pp. 515–519, 2001. View at Scopus
  65. V. Matías, L. San Feliciano, J. E. Fernández, et al., “Host and environmental factors influencing respiratory secretion of pro-wheezing biomarkers in preterm children,” Pediatric Allergy and Immunology, vol. 23, no. 5, pp. 441–447, 2012. View at Publisher · View at Google Scholar
  66. C. E. Stein, K. Kumaran, C. H. D. Fall, S. O. Shaheen, C. Osmond, and D. J. P. Barker, “Relation of fetal growth to adult lung function in South India,” Thorax, vol. 52, no. 10, pp. 895–899, 1997. View at Scopus
  67. K. F. Rabe, S. Hurd, A. Anzueto et al., “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 6, pp. 532–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. “The Global Strategy for the Diagnosis, Management and Prevention of COPD,” 2012, http://www.goldcopd.org/.
  69. K. F. Rabe, S. Hurd, A. Anzueto et al., “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 6, pp. 532–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Agustí, P. Sobradillo, and B. Celli, “Addressing the complexity of chronic obstructive pulmonary disease: from phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 9, pp. 1129–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. J. L. Wright and A. Churg, “Animal models of cigarette smoke-induced chronic obstructive pulmonary disease,” Expert Review of Respiratory Medicine, vol. 4, no. 6, pp. 723–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Sarir, P. A. J. Henricks, A. H. van Houwelingen, F. P. Nijkamp, and G. Folkerts, “Cells, mediators and Toll-like receptors in COPD,” European Journal of Pharmacology, vol. 585, no. 2-3, pp. 346–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. I. M. Adcock, G. Caramori, and P. J. Barnes, “Chronic obstructive pulmonary disease and lung cancer: new molecular insights,” Respiration, vol. 81, no. 4, pp. 265–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Stanojevic, A. Wade, J. Stocks et al., “Reference ranges for spirometry across all ages: a new approach,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 3, pp. 253–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. A. McGrath-Morrow, et al., “Neonatal hyperoxia contributes additively to cigarette smoke-induced chronic obstructive pulmonary disease changes in adult mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 3, pp. 610–616, 2011. View at Publisher · View at Google Scholar
  76. A. Pesci, B. Balbi, M. Majori et al., “Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease,” European Respiratory Journal, vol. 12, no. 2, pp. 380–386, 1998. View at Scopus
  77. K. F. Chung, “Cytokines as targets in chronic obstructive pulmonary disease,” Current Drug Targets, vol. 7, no. 6, pp. 675–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Didon, J. L. Barton, A. B. Roos, et al., “Lung epithelial CCAAT/enhancer-binding protein-β is necessary for the integrity of inflammatory responses to cigarette smoke,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 2, pp. 233–242, 2011. View at Publisher · View at Google Scholar
  79. A. B. Roos, J. L. Barton, A. Miller-Larsson, et al., “Lung epithelial-C/EBPβ contributes to LPS-induced inflammation and its suppression by formoterol,” Biochemical and Biophysical Research Communications, vol. 423, no. 1, pp. 134–139, 2012. View at Publisher · View at Google Scholar
  80. J. R. Romero, D. L. Stewart, E. K. Buysman, A. W. Fernandes, H. S. Jafri, and P. J. Mahadevia, “Serious early childhood wheezing after respiratory syncytial virus lower respiratory tract illness in preterm infants,” Clinical Therapeutics, vol. 32, no. 14, pp. 2422–2432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Edmond, S. Scott, V. Korczak, et al., “Long term sequelae from childhood pneumonia, systematic review and meta-analysis,” PLoS One, vol. 7, no. 2, article e31239, 2012.
  82. B. Resch, S. Kurath, and P. Manzoni, “Epidemiology of respiratory syncytial virus infection in preterm infants,” The Open Microbiology Journal, vol. 5, pp. 135–143, 2011. View at Publisher · View at Google Scholar
  83. H. Chen, J. Sun, S. Buckley et al., “Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 288, no. 4, pp. L683–L691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Farkas, D. Farkas, D. Warburton, et al., “Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice,” American Journal of Physiology—Lung Cellular and Molecular, vol. 301, no. 4, pp. 391–401, 2011. View at Publisher · View at Google Scholar
  85. C. Liu, E. E. Morrisey, and J. A. Whitsett, “GATA-6 is required for maturation of the lung in late gestation,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 283, no. 2, pp. L468–L475, 2002. View at Scopus
  86. Y. Zhang, N. Rath, S. Hannenhalli et al., “GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo,” Development, vol. 134, no. 1, pp. 189–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. T. N. Cassel, T. Berg, G. Suske, and M. Nord, “Synergistic transactivation of the differentiation-dependent lung gene Clara cell secretory protein (secretoglobin 1a1) by the basic region leucine zipper factor CCAAT/enhancer-binding protein α and the homeodomain factor Nkx2.1/Thyroid transcription factor-1,” Journal of Biological Chemistry, vol. 277, no. 40, pp. 36970–36977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Minoo, G. Su, H. Drum, P. Bringas, and S. Kimura, “Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(-/-) mouse embryos,” Developmental Biology, vol. 209, no. 1, pp. 60–71, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. S. E. Wert, C. R. Dey, P. A. Blair, S. Kimura, and J. A. Whitsett, “Increased expression of thyroid transcription factor-1 (TTF-1) in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation,” Developmental Biology, vol. 242, no. 2, pp. 75–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Jonckheere, A. Velghe, M. P. Ducourouble, M. C. Copin, I. B. Renes, and I. Van Seuningen, “The mouse Muc5b mucin gene is transcriptionally regulated by thyroid transcription factor-1 (TTF-1) and GATA-6 transcription factors,” FEBS Journal, vol. 278, no. 2, pp. 282–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Maeda, G. Chen, Y. Xu, et al., “Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 4, pp. 421–429, 2011. View at Publisher · View at Google Scholar
  92. G. Chen, H. Wan, F. Luo et al., “Foxa2 programs Th2 cell-mediated innate immunity in the developing lung,” The Journal of Immunology, vol. 184, no. 11, pp. 6133–6141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Wan, K. H. Kaestner, S. L. Ang et al., “Foxa2 regulates alveolarization and goblet cell hyperplasia,” Development, vol. 131, no. 4, pp. 953–964, 2004. View at Publisher · View at Google Scholar · View at Scopus