About this Journal Submit a Manuscript Table of Contents
Pulmonary Medicine
Volume 2012 (2012), Article ID 634761, 11 pages
http://dx.doi.org/10.1155/2012/634761
Review Article

Mechanisms of Physical Activity Limitation in Chronic Lung Diseases

1Department of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, 17237 Athens, Greece
2Institute of Clinical Exercise and Health Science, University of West of Scotland, Hamilton ML3 0JB, UK
31st Department of Critical Care Medicine, National and Kapodistrian University of Athens, 10675 Athens, Greece
4Thorax Foundation, Research Centre of Intensive and Emergency Thoracic Medicine, 10675 Athens, Greece

Received 25 July 2012; Accepted 26 September 2012

Academic Editor: Denis O’Donnell

Copyright © 2012 Ioannis Vogiatzis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Whipp, P. D. Wagner, and A. Agusti, “Determinants of the physiological systems responses to muscular exercise in healthy subjects,” in European Respiratory Monograph, pp. 30–34, European Respiratory Society, 2007.
  2. D. E. O'Donnell, J. C. Bertley, L. K. L. Chau, and K. A. Webb, “Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 1, pp. 109–115, 1997. View at Scopus
  3. D. E. O'Donnell, D. Ofir, and P. Laveneziana, “Patterns of cardiopulmonary response to exercise in lung diseases,” in European Respiratory Monograph, pp. 69–92, European Respiratory Society, 2007.
  4. D.E. O'Donnell and M. Fitzpatrick, “Physiology of interstitial lung disease,” in Interstitial Lung Disease, M. Schwartz and T. J. King, Eds., Decker, Hamilton, Canada, 4th edition, 2003.
  5. D. E. O'Donnell, “Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease,” in Progress in Respiratory Research, I. Weisman and R. Zeballos, Eds., pp. 138–158, Karger, Basel, Switzerland, 2002.
  6. D. E. O'Donnell and K. A. Webb, “Breathlessness in patients with severe chronic airflow limitation; Physiologic correlations,” Chest, vol. 102, no. 3, pp. 824–831, 1992. View at Scopus
  7. D. E. O'Donnell and K. A. Webb, “Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation,” American Review of Respiratory Disease, vol. 148, no. 5, pp. 1351–1357, 1993. View at Scopus
  8. D. E. O'Donnell, “Exertional breathlessness in chronic respiratory disease,” in Dyspnea, D. A. Mahler, Ed., pp. 99–147, New York, NY, USA, 1998.
  9. P. D. Wagner, “Determinants of maximal oxygen transport and utilization,” Annual Review of Physiology, vol. 58, pp. 21–50, 1996. View at Scopus
  10. M. J. Mador, T. J. Kufel, and L. Pineda, “Quadriceps fatigue after cycle exercise in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 447–453, 2000. View at Scopus
  11. O. Nishiyama, H. Taniguchi, Y. Kondoh et al., “Quadriceps weakness is related to exercise capacity in idiopathic pulmonary fibrosis,” Chest, vol. 127, no. 6, pp. 2028–2033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Mainguy, F. Maltais, D. Saey et al., “Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension,” Thorax, vol. 65, no. 2, pp. 113–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. J. Killian, “Limitation to muscular activity in chronic obstructive pulmonary disease,” European Respiratory Journal, vol. 24, no. 1, pp. 6–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. G. Gallagher, “Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease,” Clinics in Chest Medicine, vol. 15, no. 2, pp. 305–326, 1994. View at Scopus
  15. B. D. Johnson, M. S. Badr, and J. A. Dempsey, “Impact of the aging pulmonary system on the response to exercise,” Clinics in Chest Medicine, vol. 15, no. 2, pp. 229–246, 1994. View at Scopus
  16. B. D. Johnson, W. G. Reddan, D. F. Pegelow, K. C. Seow, and J. A. Dempsey, “Flow limitation and regulation of functional residual capacity during exercise in a physically active aging population,” American Review of Respiratory Disease, vol. 143, no. 5 I, pp. 960–967, 1991. View at Scopus
  17. B. D. Johnson, W. G. Reddan, K. C. Seow, and J. A. Dempsey, “Mechanical constraints on exercise hyperpnea in a fit aging population,” American Review of Respiratory Disease, vol. 143, no. 5, pp. 968–977, 1991. View at Scopus
  18. ATS/ACCP, “ATS/ACCP Statement on cardiopulmonary exercise testing,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 2, pp. 211–277, 2003.
  19. C. A. Harms, “Does gender affect pulmonary function and exercise capacity?” Respiratory Physiology and Neurobiology, vol. 151, no. 2-3, pp. 124–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Wasserman, J. E. Hansen, and D. Y. Sue, “Exercise testing and interpretation: an overview,” in Principles of Exercise Testing and Interpretation, W. R. Weinberg, Ed., pp. 1–9, Lippincott, Philadelphia, Pa, USA, 2005.
  21. D. S. DeLorey and T. G. Babb, “Progressive mechanical ventilatory constraints with aging,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 1, pp. 169–177, 1999. View at Scopus
  22. T. G. Babb, R. Viggiano, B. Hurley, B. Staats, and J. R. Rodarte, “Effect of mild-to-moderate airflow limitation on exercise capacity,” Journal of Applied Physiology, vol. 70, no. 1, pp. 223–230, 1991. View at Scopus
  23. C. Tantucci, A. Duguet, T. Similowski, M. Zelter, J. P. Derenne, and J. Milic-Emili, “Effect of salbutamol on dynamic hyperinflation in chronic obstructive pulmonary disease patients,” European Respiratory Journal, vol. 12, no. 4, pp. 799–804, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. D. E. O'Donnell, C. D'Arsigny, and K. A. Webb, “Effects of hyperoxia on ventilatory limitation during exercise in advanced chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 4, pp. 892–898, 2001. View at Scopus
  25. D. Ofir, P. Laveneziana, K. A. Webb, Y. M. Lam, and D. E. O'Donnell, “Mechanisms of Dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 6, pp. 622–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. O'Donnell, P. Laveneziana, J. Ora, K. A. Webb, Y. M. Lam, and D. Ofir, “Evaluation of acute bronchodilator reversibility in patients with symptoms of GOLD stage i COPD,” Thorax, vol. 64, no. 3, pp. 216–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. A. Dillard, S. Piantadosi, and K. R. Rajagopal, “Prediction of ventilation at maximal exercise in chronic air-flow obstruction,” American Review of Respiratory Disease, vol. 132, no. 2, pp. 230–235, 1985. View at Scopus
  28. P. Laveneziana, C. M. Parker, and D. E. O'Donnell, “Ventilatory constraints and dyspnea during exercise in chronic obstructive pulmonary disease,” Applied Physiology, Nutrition and Metabolism, vol. 32, no. 6, pp. 1225–1238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. R. MacIntyre, “Mechanisms of functional loss in patients with chronic lung disease,” Respiratory Care, vol. 53, no. 9, pp. 1177–1184, 2008. View at Scopus
  30. H. Evison and R. M. Cherniack, “Ventilatory cost of exercise in chronic obstructive pulmonary disease,” Journal of Applied Physiology, vol. 25, no. 1, pp. 21–27, 1968. View at Scopus
  31. N. R. MacIntyre and N. E. Leatherman, “Mechanical loads on the ventilatory muscles. A theoretical analysis,” American Review of Respiratory Disease, vol. 139, no. 4 I, pp. 968–973, 1989. View at Scopus
  32. P. Palange and S. A. Ward, “Recommendations on the use of exercise testing in clinical practice,” European Respiratory Journal, vol. 29, no. 5, pp. 1066–1067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Casaburi, K. Wasserman, A. Patessio, F. Loli, S. Zanaboni, and C. F. Donner, “A new perspective in pulmonary rehabilitation: anaerobic threshold as a discriminant in training,” European Respiratory Journal, vol. 2, supplement 7, pp. S618–S623, 1989.
  34. R. Casaburi, “Skeletal muscle dysfunction in chronic obstructive pulmonary disease,” Medicine and Science in Sports and Exercise, vol. 33, no. 7, supplement, pp. S662–S670, 2001. View at Scopus
  35. R. Casaburi, A. Patessio, F. Ioli, S. Zanaboni, C. F. Donner, and K. Wasserman, “Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease,” American Review of Respiratory Disease, vol. 143, no. 1, pp. 9–18, 1991. View at Scopus
  36. R. Casaburi and T. L. Petty, “Reductions in exercise lactic acidosis,” in Principles and Practice of Pulmonary Rehabilitation, T. Barstow and R. Casaburi, Eds., pp. 50–65, Philadelphia, Pa, USA, 1993.
  37. C. G. Gallagher, “Exercise and chronic obstructive pulmonary disease,” Medical Clinics of North America, vol. 74, no. 3, pp. 619–641, 1990. View at Scopus
  38. F. Maltais, A. A. Simard, C. Simard et al., “Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 288–293, 1996. View at Scopus
  39. D. E. O'Donnell and K. A. Webb, “The major limitation to exercise performance in COPD is dynamic hyperinflation,” Journal of Applied Physiology, vol. 105, no. 2, pp. 753–757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. E. O'Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 5, pp. 770–777, 2001. View at Scopus
  41. J. B. West, “State of the art: ventilation-perfusion relationships,” American Review of Respiratory Disease, vol. 116, no. 5, pp. 919–943, 1977.
  42. A. J. Rice, A. T. Thornton, C. J. Gore et al., “Pulmonary gas exchange during exercise in highly trained cyclists with arterial hypoxemia,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1802–1812, 1999. View at Scopus
  43. A. G. N. Agusti, J. Cotes, and P. D. Wagner, “Responses to exercise in lung diseases,” European Respiratory Monograph, vol. 2, no. 6, pp. 32–50, 1997. View at Scopus
  44. P. Begin and A. Grassino, “Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 143, no. 5, pp. 905–912, 1991. View at Scopus
  45. R. W. Light, C. K. Mahutte, and S. E. Brown, “Etiology of carbon dioxide retention at rest and during exercise in chronic airflow obstruction,” Chest, vol. 94, no. 1, pp. 61–67, 1988. View at Scopus
  46. A. De Troyer, J. B. Leeper, D. K. McKenzie, and S. C. Gandevia, “Neural drive to the diaphragm in patients with severe COPD,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 4, pp. 1335–1340, 1997. View at Scopus
  47. R. Mountain, C. Zwillich, and J. Weil, “Hypoventilation in obstructive lung disease. The role of familial factors,” New England Journal of Medicine, vol. 298, no. 10, pp. 521–525, 1978. View at Scopus
  48. D. E. O'Donnell, C. D'Arsigny, M. Fitzpatrick, and K. A. Webb, “Exercise hypercapnia in advanced chronic obstructive pulmonary disease: the role of lung hyperinflation,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 5, pp. 663–668, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises—part I: aging arteries: a “set up” for vascular disease,” Circulation, vol. 107, no. 1, pp. 139–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises—part II: the aging heart in health: links to heart disease,” Circulation, vol. 107, no. 2, pp. 346–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. A. M. Ferrazza, D. Martolini, G. Valli, and P. Palange, “Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases,” Respiration, vol. 77, no. 1, pp. 3–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Naeije, “Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 2, no. 1, pp. 20–22, 2005.
  53. A. G. N. Agusti, J. A. Barbera, J. Roca, P. D. Wagner, R. Guitart, and R. Rodriguez-Roisin, “Hypoxic pulmonary vasoconstriction and gas exchange during exercise in chronic obstructive pulmonary disease,” Chest, vol. 97, no. 2, pp. 268–275, 1990. View at Scopus
  54. A. G. N. Agusti, J. Roca, J. Gea, P. D. Wagner, A. Xaubet, and R. Rodriguez-Roisin, “Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis,” American Review of Respiratory Disease, vol. 143, no. 2, pp. 219–225, 1991. View at Scopus
  55. G. E. D'Alonzo, L. A. Gianotti, and R. L. Pohil, “Comparison of progressive exercise performance of normal subjects and patients with primary pulmonary hypertension,” Chest, vol. 92, no. 1, pp. 57–62, 1987. View at Scopus
  56. D. R. Dantzker and G. E. D'Alonzo, “The effect of exercise on pulmonary gas exchange in patients with severe chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 134, no. 6, pp. 1135–1139, 1986. View at Scopus
  57. D. R. Dantzker, G. E. D'Alonzo, and J. S. Bower, “Pulmonary gas exchange during exercise in patients with chronic obliterative pulmonary hypertension,” American Review of Respiratory Disease, vol. 130, no. 3, pp. 412–416, 1984. View at Scopus
  58. J. S. Janicki, “Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure,” Circulation, vol. 81, no. 2, supplement, pp. 15–20, 1990. View at Scopus
  59. J. A. Dempsey, C. A. Harms, and D. M. Ainsworth, “Respiratory muscle perfusion and energetics during exercise,” Medicine and Science in Sports and Exercise, vol. 28, no. 9, pp. 1123–1128, 1996. View at Scopus
  60. C. A. Harms, M. A. Babcock, S. R. McClaran et al., “Respiratory muscle work compromises leg blood flow during maximal exercise,” Journal of Applied Physiology, vol. 82, no. 5, pp. 1573–1583, 1997. View at Scopus
  61. J. A. Neder, P. W. Jones, L. E. Nery, and B. J. Whipp, “Determinants of the exercise endurance capacity in patients with chronic obstructive pulmonary disease: the power-duration relationship,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 2, pp. 497–504, 2000. View at Scopus
  62. L. E. Nery, K. Wasserman, and J. D. Andrews, “Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 53, no. 6, pp. 1594–1602, 1982. View at Scopus
  63. P. Palange, P. Galassetti, E. T. Mannix et al., “Oxygen effect on O2 deficit and VO2 kinetics during exercise in obstructive pulmonary disease,” Journal of Applied Physiology, vol. 78, no. 6, pp. 2228–2234, 1995. View at Scopus
  64. C. Roussos and P. T. Macklem, “The respiratory muscles,” New England Journal of Medicine, vol. 307, no. 13, pp. 786–797, 1982. View at Scopus
  65. L. Puente-Maestu, T. Tena, C. Trascasa et al., “Training improves muscle oxidative capacity and oxygenation recovery kinetics in patients with chronic obstructive pulmonary disease,” European Journal of Applied Physiology, vol. 88, no. 6, pp. 580–587, 2003. View at Scopus
  66. G. R. Chiappa, A. Borghi-Silva, L. F. Ferreira et al., “Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics,” Journal of Applied Physiology, vol. 104, no. 5, pp. 1341–1350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. P. D. Wagner, G. E. Gale, and R. E. Moon, “Pulmonary gas exchange in humans exercising at sea level and simulated altitude,” Journal of Applied Physiology, vol. 61, no. 1, pp. 260–270, 1986. View at Scopus
  68. P. D. Wagner, “Possible mechanisms underlying the development of cachexia in COPD,” European Respiratory Journal, vol. 31, no. 3, pp. 492–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Gosselink, T. Troosters, and M. Decramer, “Peripheral muscle weakness contributes to exercise limitation in COPD,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 3, pp. 976–980, 1996. View at Scopus
  70. A. L. Hamilton, K. J. Killian, E. Summers, and N. L. Jones, “Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 6 I, pp. 2021–2031, 1995. View at Scopus
  71. S. Bernard, P. Leblanc, F. Whittom et al., “Peripheral muscle weakness in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 2, pp. 629–634, 1998. View at Scopus
  72. I. Serres, V. Gautier, A. Varray, and C. Préfaut, “Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients,” Chest, vol. 113, no. 4, pp. 900–905, 1998. View at Scopus
  73. F. W. Booth and P. D. Gollnick, “Effects of disuse on the structure and function of skeletal muscle,” Medicine and Science in Sports and Exercise, vol. 15, no. 5, pp. 415–420, 1983. View at Scopus
  74. E. F. Coyle, W. H. Martin, and S. A. Bloomfield, “Effects of detraining on responses to submaximal exercise,” Journal of Applied Physiology, vol. 59, no. 3, pp. 853–859, 1985. View at Scopus
  75. C. A. Ottenheijm, L. M. Heunks, G. C. Sieck, et al., “Diaphragm dysfunction in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 2, pp. 200–205, 2005.
  76. A. DeTroyer and N. Pride, “The chest wall and respiratory muscles in chronic obstructive pulmonary disease,” in The Thorax, Part C: Disease, Marcel Dekker, New York, NY, USA, 2nd edition, 1995.
  77. ATS, “ATS statement: skeletal muscle dysfunction in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 159, pp. S1–S40, 1999.
  78. G. Tiao, J. M. Fagan, N. Samuels et al., “Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle,” Journal of Clinical Investigation, vol. 94, no. 6, pp. 2255–2264, 1994. View at Scopus
  79. M. Llovera, C. García-Martínez, N. Agell, F. J. López-Soriano, and J. M. Argilés, “TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles,” Biochemical and Biophysical Research Communications, vol. 230, no. 2, pp. 238–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Biolo, G. Toigo, B. Ciocchi et al., “Metabolic response to injury and sepsis: changes in protein metabolism,” Nutrition, vol. 13, no. 9, pp. S52–S57, 1997. View at Scopus
  81. M. Di Francia, D. Barbier, J. L. Mege, and J. Orehek, “Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 5 I, pp. 1453–1455, 1994. View at Scopus
  82. I. De Godoy, M. Donahoe, W. J. Calhoun, J. Mancino, and R. M. Rogers, “Elevated TNF-α production by peripheral blood monocytes of weight-losing COPD patients,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 2, pp. 633–637, 1996. View at Scopus
  83. A. M. W. J. Schols, W. A. Buurman, A. J. Staal-van Den Brekel, M. A. Dentener, and E. F. M. Wouters, “Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease,” Thorax, vol. 51, no. 8, pp. 819–824, 1996. View at Scopus
  84. W. E. Mitch and A. L. Goldberg, “Mechanisms of disease: mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway,” New England Journal of Medicine, vol. 335, no. 25, pp. 1897–1905, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. I. Vogiatzis, D. C. M. Simoes, G. Stratakos et al., “Effect of pulmonary rehabilitation on muscle remodelling in cachectic patients with COPD,” European Respiratory Journal, vol. 36, no. 2, pp. 301–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. H. R. Gosker, B. Kubat, G. Schaart, G. J. van der Vusse, E. F. M. Wouters, and A. M. W. J. Schols, “Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease,” European Respiratory Journal, vol. 22, no. 2, pp. 280–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. A. G. Agustí, J. Sauleda, C. Miralles, et al., “Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 4, pp. 485–489, 2002.
  88. M. J. Jackson and S. O'Farrell, “Free radicals and muscle damage,” British Medical Bulletin, vol. 49, no. 3, pp. 630–641, 1993. View at Scopus
  89. M. Buck and M. Chojkier, “Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants,” EMBO Journal, vol. 15, no. 8, pp. 1753–1765, 1996. View at Scopus
  90. S. Llesuy, P. Evelson, B. Gonzalez-Flecha et al., “Oxidative stress in muscle and liver of rats with septic syndrome,” Free Radical Biology and Medicine, vol. 16, no. 4, pp. 445–451, 1994. View at Publisher · View at Google Scholar · View at Scopus
  91. M. P. K. J. Engelen, A. M. W. J. Schols, W. C. Baken, G. J. Wesseling, and E. F. M. Wouters, “Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD,” European Respiratory Journal, vol. 7, no. 10, pp. 1793–1797, 1994. View at Publisher · View at Google Scholar · View at Scopus
  92. A. M. W. J. Schols, P. B. Soeters, A. M. C. Dingemans, R. Mostert, P. J. Frantzen, and E. F. M. Wouters, “Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation,” American Review of Respiratory Disease, vol. 147, no. 5, pp. 1151–1156, 1993. View at Scopus
  93. S. G. Kelsen, M. Ference, and S. Kapoor, “Effects of prolonged undernutrition on structure and function of the diaphragm,” Journal of Applied Physiology, vol. 58, no. 4, pp. 1354–1359, 1985. View at Scopus
  94. M. Vaz, S. Thangam, A. Prabhu, and P. S. Shetty, “Maximal voluntary contraction as a functional indicator of adult chronic undernutrition,” British Journal of Nutrition, vol. 76, no. 1, pp. 9–15, 1996. View at Scopus
  95. E. Fiaccadori, P. Zambrelli, and G. Tortorella, “Physiopathology of respiratory muscles in malnutrition,” Minerva Anestesiologica, vol. 61, no. 3, pp. 93–99, 1995. View at Scopus
  96. D. R. Openbrier, M. M. Irwin, and R. M. Rogers, “Nutritional status and lung function in patients with emphysema and chronic bronchitis,” Chest, vol. 83, no. 1, pp. 17–22, 1983. View at Scopus
  97. W. E. Mitch, R. Medina, S. Grieber et al., “Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes,” Journal of Clinical Investigation, vol. 93, no. 5, pp. 2127–2133, 1994. View at Scopus
  98. E. Fiaccadori, E. Coffrini, N. Ronda et al., “Hypophosphatemia in course of chronic obstructive pulmonary disease. Prevalence, mechanisms, and relationships with skeletal muscle phosphorus content,” Chest, vol. 97, no. 4, pp. 857–868, 1990. View at Scopus
  99. J. P. Knochel, “Neuromuscular manifestations of electrolyte disorders,” American Journal of Medicine, vol. 72, no. 3, pp. 521–535, 1982. View at Scopus
  100. E. Fiaccadori, E. Coffrini, C. Fracchia, C. Rampulla, T. Montagna, and A. Borghetti, “Hypophosphatemia and phosphorus depletion in respiratory and peripheral muscles of patients with respiratory failure due to COPD,” Chest, vol. 105, no. 5, pp. 1392–1398, 1994. View at Scopus
  101. G. Stendig Lindberg, J. Bergstrom, and E. Hultman, “Hypomagnesaemia and muscle electrolytes and metabolites,” Acta Medica Scandinavica, vol. 201, no. 4, pp. 273–280, 1977. View at Scopus
  102. M. Decramer, L. M. Lacquet, R. Fagard, and P. Rogiers, “Corticosteroids contribute to muscle weakness in chronic airflow obstruction,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 1, pp. 11–16, 1994. View at Scopus
  103. M. Decramer, V. De Bock, and R. Dom, “Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 6, pp. 1958–1964, 1996. View at Scopus
  104. M. Hall-Angeras, U. Angeras, O. Zamir, P. O. Hasselgren, and J. E. Fischer, “Interaction between corticosterone and tumor necrosis factor stimulated protein breakdown in rat skeletal muscle, similar to sepsis,” Surgery, vol. 108, no. 2, pp. 460–466, 1990. View at Scopus