About this Journal Submit a Manuscript Table of Contents
Pulmonary Medicine
Volume 2012 (2012), Article ID 797495, 6 pages
http://dx.doi.org/10.1155/2012/797495
Clinical Study

Concave Pattern of a Maximal Expiratory Flow-Volume Curve: A Sign of Airflow Limitation in Adult Bronchial Asthma

1Ohwada Clinic, 4-7-13 Minamiyawata, Ichikawa, Chiba 272-0023, Japan
2Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan

Received 9 August 2012; Revised 12 October 2012; Accepted 29 October 2012

Academic Editor: Roberto Walter Dal Negro

Copyright © 2012 Akihiko Ohwada and Kazuhisa Takahashi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Global Initiative for Asthma (GINA), “Global strategy for asthma management and prevention,” NHLBI/WHO Workshop Report, National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, Md, USA, 2009.
  2. J. Kraan, T. W. van der Mark, and G. H. Koeter, “Changes in maximum expiratory flow-volume curve configuration after treatment with inhaled corticosteroids,” Thorax, vol. 44, no. 12, pp. 1015–1021, 1989. View at Scopus
  3. M. C. Kapp, E. N. Schachter, G. J. Beck, L. R. Maunder, and T. J. Witek, “The shape of the maximum expiratory flow volume curve,” Chest, vol. 94, no. 4, pp. 799–806, 1988. View at Scopus
  4. R. Pellegrino, G. Viegi, V. Brusasco et al., “Interpretative strategies for lung function tests,” European Respiratory Journal, vol. 26, no. 5, pp. 948–968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. Miller, J. Hankinson, V. Brusasco et al., “Standardisation of spirometry,” European Respiratory Journal, vol. 26, no. 2, pp. 319–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Japanese Respiratory Society, “Standard reference values of spirometric parameters and arterial blood gas analysis,” (Author translated) in Japanese, The Japanese Respiratory Society Journalhttp://www.jrs.or.jp/quicklink/glsm/guideline/nopass_pdf/spirogram.pdf, 2004.
  7. J. L. Hankinson, J. R. Odencrantz, and K. B. Fedan, “Spirometric reference values from a sample of the general U.S. population,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 1, pp. 179–187, 1999. View at Scopus
  8. A. Bouhuys, “Pulmonary function measurements in epidemiological studies,” Bull Eur Physiopathol Respir, vol. 6, no. 3, pp. 561–578, 1970.
  9. C. K. W. Lai, R. Beasley, J. Crane et al., “Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC),” Thorax, vol. 64, no. 6, pp. 476–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Fukutomi, M. Taniguchi, J. Watanabe, et al., “Time trend in the prevalence of adult asthma in Japan: findings from population-based surveys in Fujieda City in 1985, 1999, and 2006,” Allergology International, vol. 60, no. 4, pp. 443–448, 2011.
  11. S. W. Yancey and H. G. Ortega, “Retrospective characterization of airway reversibility in patients with asthma responsive to bronchodilators,” Current Medical Research and Opinion, vol. 23, no. 12, pp. 3205–3207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Ohwada, K. Inami, E. Onuma, M. Matsumoto-Yamazaki, R. Atsuta, and K. Takahashi, “Bronchial reversibility with a short-acting β2-agonist predicts the FEV1 response to administration of a long-acting β2-agonist with inhaled corticosteroids in patients with bronchial asthma,” Experimental and Therapeutic Medicine, vol. 2, no. 4, pp. 619–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. C. Moore, E. R. Bleecker, D. Curran-Everett et al., “Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program,” Journal of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 405–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Sorkness, E. R. Bleecker, W. W. Busse et al., “Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation,” Journal of Applied Physiology, vol. 104, no. 2, pp. 394–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Mead, “Analysis of the configuration of maximum expiratory flow-volume curves,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 44, no. 2, pp. 156–165, 1978. View at Scopus
  16. O. Omland, T. Sigsgaard, O. F. Pedersen, and M. R. Miller, “The shape of the maximum expiratory flow-volume curve reflects exposure in farming,” Annals of Agricultural and Environmental Medicine, vol. 7, no. 2, pp. 71–78, 2000. View at Scopus
  17. R. Drewek, E. Garber, S. Stanclik, P. Simpson, M. Nugent, and W. Gershan, “The FEF25-75 and its decline as a predictor of methacholine responsiveness in children,” Journal of Asthma, vol. 46, no. 4, pp. 375–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Linna, “A doctor's ability to assess the severity of childhood asthma by simple clinical features,” Acta Paediatrica, vol. 94, no. 5, pp. 559–563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhang, R. McConnell, F. Gilliland, and K. Berhane, “Ethnic differences in the effect of asthma on pulmonary function in children,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 596–603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Nève, R. Matran, G. Baquet, et al., “Quantification of shape of flow-volume loop of healthy preschool children and preschool children with wheezing disorders,” Pediatric Pulmonology, vol. 47, no. 9, pp. 884–894, 2012.
  21. M. Contoli, J. Bousquet, L. M. Fabbri et al., “The small airways and distal lung compartment in asthma and COPD: a time for reappraisal,” Allergy, vol. 65, no. 2, pp. 141–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Contoli, M. Kraft, Q. Hamid, et al., “Do small airway abnormalities characterize asthma phenotypes? In search of proof,” Clinical & Experimental Allergy, vol. 42, no. 8, pp. 1150–1160, 2012.