About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2007 (2007), Article ID 97125, 13 pages
Research Article

The Effect of PPARα, PPARδ, PPARγ, and PPARpan Agonists on Body Weight, Body Mass, and Serum Lipid Profiles in Diet-Induced Obese AKR/J Mice

Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park 27709, NC, USA

Received 18 November 2006; Revised 8 February 2007; Accepted 3 March 2007

Academic Editor: Francine M. Gregoire

Copyright © 2007 W. Wallace Harrington et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Activation of peroxisome proliferator-activated receptor (PPAR) α, δ, and γ subtypes increases expression of genes involved in fatty acid transport and oxidation and alters adiposity in animal models of obesity and type-2 diabetes. PPARpan agonists which activate all three receptor subtypes have antidiabetic activity in animal models without the weight gain associated with selective PPARγ agonists. Herein we report the effects of selective PPAR agonists (GW9578, a PPARα agonist, GW0742, a PPARδ agonist, GW7845, a PPARγ agonist), combination of PPARα and δ agonists, and PPARpan (PPARα/γ/δ) activators (GW4148 or GW9135) on body weight (BW), body composition, food consumption, fatty acid oxidation, and serum chemistry of diet-induced obese AKR/J mice. PPARα or PPARδ agonist treatment induced a slight decrease in fat mass (FM) while a PPARγ agonist increased BW and FM commensurate with increased food consumption. The reduction in BW and food intake after cotreatment with PPARα and δ agonists appeared to be synergistic. GW4148, a PPARpan agonist, induced a significant and sustained reduction in BW and FM similar to an efficacious dose of rimonabant, an antiobesity compound. GW9135, a PPARpan agonist with weak activity at PPARδ, induced weight loss initially followed by rebound weight gain reaching vehicle control levels by the end of the experiment. We conclude that PPARα and PPARδ activations are critical to effective weight loss induction. These results suggest that the PPARpan compounds may be expected to maintain the beneficial insulin sensitization effects of a PPARγ agonist while either maintaining weight or producing weight loss.