About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2011 (2011), Article ID 171765, 11 pages
http://dx.doi.org/10.1155/2011/171765
Research Article

PPARγ Promotes Growth and Invasion of Thyroid Cancer Cells

1Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
2University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO 80045, USA

Received 9 August 2011; Accepted 17 September 2011

Academic Editor: Maria Paola Cerù

Copyright © 2011 William M. Wood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Wahli, O. Braissant, and B. Desvergne, “Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more,” Chemistry and Biology, vol. 2, no. 5, pp. 261–266, 1995. View at Scopus
  3. P. A. Grimaldi, “The roles of PPARs in adipocyte differentiation,” Progress in Lipid Research, vol. 40, no. 4, pp. 269–281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Tontonoz, S. Singer, B. M. Forman et al., “Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 237–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Sarraf, E. Mueller, D. Jones et al., “Differentiation and reversal of malignant changes in colon cancer through PPARγ,” Nature Medicine, vol. 4, no. 9, pp. 1046–1052, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Bren-Mattison, V. Van Putten, D. Chan, R. Winn, M. W. Geraci, and R. A. Nemenoff, “Peroxisome proliferator-activated receptor-γ (PPARγ) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC),” Oncogene, vol. 24, no. 8, pp. 1412–1422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. V. G. Keshamouni, R. C. Reddy, D. A. Arenberg et al., “Peroxisome proliferator-activated receptor-γ activation inhibits tumor progression in non-small-cell lung cancer,” Oncogene, vol. 23, no. 1, pp. 100–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Seed, “PPARγ and colorectal carcinoma: conflicts in a nuclear family,” Nature Medicine, vol. 4, no. 9, pp. 1004–1005, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Abe, Y. Kiriyama, M. Hirano et al., “Troglitazone suppresses cell growth of KU812 cells independently of PPARγ,” European Journal of Pharmacology, vol. 436, no. 1-2, pp. 7–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Wei, J. Yang, S. L. Lee, S. K. Kulp, and C. S. Chen, “PPARγ-independent antitumor effects of thiazolidinediones,” Cancer Letters, vol. 276, no. 2, pp. 119–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ohta, T. Endo, K. Haraguchi, J. M. Hershman, and T. Onaya, “Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 2170–2177, 2001. View at Publisher · View at Google Scholar
  12. M. L. Martelli, R. Iuliano, I. Le Pera et al., “Inhibitory effects of peroxisome proliferator-activated receptor γ on thyroid carcinoma cell growth,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 10, pp. 4728–4735, 2002. View at Publisher · View at Google Scholar
  13. J. W. Park, R. Zarnegar, H. Kanauchi et al., “Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines,” Thyroid, vol. 15, no. 3, pp. 222–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Aiello, G. Pandini, F. Frasca et al., “Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells,” Endocrinology, vol. 147, no. 9, pp. 4463–4475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Copland, L. A. Marlow, S. Kurakata et al., “Novel high-affinity PPARγ agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1,” Oncogene, vol. 25, no. 16, pp. 2304–2317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. E. Schweppe, J. P. Klopper, C. Korch et al., “Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4331–4341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. P. Klopper, V. Sharma, A. Berenz et al., “Retinoid and thiazolidinedione therapies in melanoma: an analysis of differential response based on nuclear hormone receptor expression,” Molecular Cancer, vol. 8, article 16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Klopper, A. Berenz, W. R. Hays et al., “In vivo and microarray analysis of rexinoid-responsive anaplastic thyroid carcinoma,” Clinical Cancer Research, vol. 14, no. 2, pp. 589–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Kebebew, M. Peng, E. Reiff et al., “A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer,” Surgery, vol. 140, no. 6, pp. 960–966, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Philips, C. Petite, J. P. Willi, F. Buchegger, and C. A. Meier, “Effect of peroxisome proliferator-activated receptor γ agonist, rosiglitazone, on dedifferentiated thyroid cancers,” Nuclear Medicine Communications, vol. 25, no. 12, pp. 1183–1186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. Marlow, L. A. Reynolds, A. S. Cleland et al., “Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth,” Cancer Research, vol. 69, no. 4, pp. 1536–1544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. B. Ain, “Management of undifferentiated thyroid cancer,” Baillieres Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 14, no. 4, pp. 615–629, 2000. View at Publisher · View at Google Scholar
  23. M. N. Nikiforova, P. W. Biddinger, C. M. Caudill, T. G. Kroll, and Y. E. Nikiforov, “PAX8-PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses,” The American Journal of Surgical Pathology, vol. 26, no. 8, pp. 1016–1023, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Aldred, C. Morrison, O. Gimm et al., “Peroxisome proliferator-activated receptor gamma is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas,” Oncogene, vol. 22, no. 22, pp. 3412–3416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Karger, K. Berger, M. Eszlinger et al., “Evaluation of peroxisome proliferator-activated receptor-γ expression in benign and malignant thyroid pathologies,” Thyroid, vol. 15, no. 9, pp. 997–1003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Hayashi, S. Nakamori, N. Hiraoka et al., “Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma,” International Journal of Oncology, vol. 24, no. 1, pp. 89–95, 2004. View at Scopus
  27. J. Yu, B. Shen, E. S. H. Chu et al., “Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro,” Hepatology, vol. 51, no. 6, pp. 2008–2019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. A. McAlpine, Y. Barak, I. Matise, and R. T. Cormier, “Intestinal-specific PPARγ deficiency enhances tumorigenesis in ApcMin/+ mice,” International Journal of Cancer, vol. 119, no. 10, pp. 2339–2346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Kato, H. Ying, L. Zhao et al., “PPARγ insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-κB signaling pathway,” Oncogene, vol. 25, no. 19, pp. 2736–2747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Saez, J. Rosenfeld, A. Livolsi et al., “PPARγ signaling exacerbates mammary gland tumor development,” Genes and Development, vol. 18, no. 5, pp. 528–540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. V. Reddi, P. Madde, D. Milosevic et al., “The putative PAX8/PPARγ fusion oncoprotein exhibits partial tumor suppressor activity through Up-regulation of Micro-RNA-122 and dominant-negative PPARγ activity,” Genes & Cancer, vol. 2, no. 1, pp. 46–55, 2011. View at Publisher · View at Google Scholar
  32. C. H. Yam, T. K. Fung, and R. Y. C. Poon, “Cyclin A in cell cycle control and cancer,” Cellular and Molecular Life Sciences, vol. 59, no. 8, pp. 1317–1326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Kawamoto, H. Koizumi, and T. Uchikoshi, “Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses,” The American Journal of Pathology, vol. 150, no. 1, pp. 15–23, 1997. View at Scopus
  34. S. H. Chung, N. Onoda, T. Ishikawa et al., “Peroxisome proliferator-activated receptor gamma activation induces cell cycle arrest via the p53-independent pathway in human anaplastic thyroid cancer cells,” Japanese Journal of Cancer Research, vol. 93, no. 12, pp. 1358–1365, 2002. View at Scopus
  35. D. Bonofiglio, H. Qi, S. Gabriele et al., “Peroxisome proliterator-activated receptor γ inhibits follicular and anaplastic thyroid carcinoma cells growth by upregulating p21Cip1/WAF1 gene in a Sp1-dependent manner,” Endocrine-Related Cancer, vol. 15, no. 2, pp. 545–557, 2008. View at Publisher · View at Google Scholar
  36. L. Fajas, V. Egler, R. Reiter, S. Miard, A. M. Lefebvre, and J. Auwerx, “PPARγ controls cell proliferation and apoptosis in an RB-dependent manner,” Oncogene, vol. 22, no. 27, pp. 4186–4193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. R. F. Morrison and S. R. Farmer, “Role of PPARγ in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18INK4c and p21Waf1/Cip1, during adipogenesis,” Journal of Biological Chemistry, vol. 274, no. 24, pp. 17088–17097, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Itami, G. Watanabe, Y. Shimada et al., “Ligands for peroxisome proliferator-activated receptor γ inhibit growth of pancreatic cancers both in vitro and in vivo,” International Journal of Cancer, vol. 94, no. 3, pp. 370–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Liu, C. Zang, M. H. Fenner, K. Possinger, and E. Elstner, “PPARγ ligands and ATRA inhibit the invasion of human breast cancer cells in vitro,” Breast Cancer Research and Treatment, vol. 79, no. 1, pp. 63–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. C. Yang, T. C. Ho, S. L. Chen, H. Y. Lai, J. W. Wu, and Y. P. Tsao, “Inhibition of cell motility by troglitazone in human ovarian carcinoma cell line,” BMC Cancer, vol. 7, article 216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Coras, A. Hölsken, S. Seufert et al., “The peroxisome proliferator-activated receptor-γ agonist troglitazone inhibits transforming growth factor-β-mediated glioma cell migration and brain invasion,” Molecular Cancer Therapeutics, vol. 6, no. 6, pp. 1745–1754, 2007. View at Publisher · View at Google Scholar