About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2012 (2012), Article ID 304760, 23 pages
http://dx.doi.org/10.1155/2012/304760
Review Article

PPARs: Interference with Warburg’ Effect and Clinical Anticancer Trials

1Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
2Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
3Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
4Organic Chemistry Laboratory, Faculty of Sciences, UMons, 7000 Mons, Belgium
5Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France

Received 14 December 2011; Revised 15 February 2012; Accepted 19 February 2012

Academic Editor: Dipak Panigrahy

Copyright © 2012 Joseph Vamecq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Keshamouni, S. Han, and J. Roman, “Peroxisome proliferator-activated receptors in lung cancer,” PPAR Research, vol. 2007, Article ID 90289, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Panigrahy, A. Kaipainen, M. W. Kieran, and S. Huang, “Editorial: PPARs: a double-edged sword in cancer therapy?” PPAR Research, vol. 2008, Article ID 350351, 2 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Tachibana, D. Yamasaki, K. Ishimoto, and T. Doi, “The role of PPARs in cancer,” PPAR Research, vol. 2008, Article ID 102737, 15 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Borbath and Y. Horsmans, “The role of PPARγ in hepatocellular carcinoma,” PPAR Research, vol. 2008, Article ID 209520, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. L. Wang and Q. Miao, “To live or to die: prosurvival activity of PPARγ in cancers,” PPAR Research, vol. 2008, Article ID 209629, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Campbell, C. Carlberg, and H. P. Koeffler, “A role for the PPARγ in cancer therapy,” PPAR Research, vol. 2008, Article ID 314974, 17 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Kuniyasu, “The roles of dietary PPARγ ligands for metastasis in colorectal cancer,” PPAR Research, vol. 2008, Article ID 529720, 7 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Müller, M. Kömhoff, J. M. Peters, and S. Müller-Brüsselbach, “A role for PPARβ/δ in tumor stroma and tumorigenesis,” PPAR Research, vol. 2008, Article ID 534294, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Qiao, B. Zou, and B. C. Y. Wong, “Current understanding of the role of PPAR γ in gastrointestinal cancers,” PPAR Research, vol. 2009, Article ID 816957, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. G. G. Mackenzie, S. Rasheed, W. Wertheim, and B. Rigas, “NO-donating nsaids, PPARδ, and cancer: does PPARδ contribute to colon carcinogenesis?” PPAR Research, vol. 2008, Article ID 919572, 11 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Ralph, P. Low, L. Dong, A. Lawen, and J. Neuzil, “Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents,” Recent Patents on Anti-cancer Drug Discovery, vol. 1, no. 3, pp. 327–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. F. Dong, E. Swettenham, J. Eliasson et al., “Vitamin e analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress,” Cancer Research, vol. 67, no. 24, pp. 11906–11913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Peterson, “Drug therapy of cancer,” European Journal of Clinical Pharmacology, vol. 67, no. 5, pp. 437–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Leite de Oliveira, A. Hamm, and M. Mazzone, “Growing tumor vessels: more than one way to skin a cat—implications for angiogenesis targeted cancer therapies,” Molecular Aspects of Medicine, vol. 32, no. 2, pp. 71–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Vamecq, N. Mestdagh, J. P. Henichart, and J. Poupaert, “Metabolic therapy of cancer,” Journal de Pharmacie de Belgique, vol. 45, no. 6, pp. 361–374, 1990. View at Scopus
  16. J. Vamecq, N. Mestdagh, J. P. Hénichart, and J. H. Poupaert, “Metabolic therapy of cancer-ether lipid and glycolyl-coa metabolic pathways,” Asia Pacific Journal of Pharmacology, vol. 6, no. 2, pp. 201–212, 1991. View at Scopus
  17. W. W. Ma and A. A. Adjei, “Novel agents on the horizon for cancer therapy,” CA: Cancer Journal for Clinicians, vol. 59, no. 2, pp. 111–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Carew and P. Huang, “Mitochondrial defects in cancer,” Molecular Cancer, vol. 1, article no. 9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Kroemer, “Mitochondria in cancer,” Oncogene, vol. 25, no. 34, pp. 4630–4632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Warburg, “Über den stoffwechsel der carcinomzelle,” Klinische Wochenschrift, vol. 4, no. 12, pp. 534–536, 1925. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Warburg, “On respiratory impairment in cancer cells,” Science, vol. 124, no. 3215, pp. 269–270, 1956. View at Scopus
  22. E. Hernlund, L. S. Ihrlund, O. Khan et al., “Potentiation of chemotherapeutic drugs by energy metabolism inhibitors 2-deoxyglucose and etomoxir,” International Journal of Cancer, vol. 123, no. 2, pp. 476–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. P. Hsu and D. M. Sabatini, “Cancer cell metabolism: warburg and beyond,” Cell, vol. 134, no. 5, pp. 703–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. DeBerardinis, “Is cancer a disease of abnormal cellular metabolism? new angles on an old idea,” Genetics in Medicine, vol. 10, no. 11, pp. 767–777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. V. Dang, A. Le, and P. Gao, “MYC-induced cancer cell energy metabolism and therapeutic opportunities,” Clinical Cancer Research, vol. 15, no. 21, pp. 6479–6483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Yeung, J. Pan, and M. H. Lee, “Roles of p53, myc and hif-1 in regulating glycolysis—the seventh hallmark of cancer,” Cellular and Molecular Life Sciences, vol. 65, no. 24, pp. 3981–3999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kaluz, M. Kaluzová, and E. J. Stanbridge, “Regulation of gene expression by hypoxia: integration of the hif-transduced hypoxic signal at the hypoxia-responsive element,” Clinica Chimica Acta, vol. 395, no. 1-2, pp. 6–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Zagórska and J. Dulak, “Hif-1: the knowns and unknowns of hypoxia sensing,” Acta Biochimica Polonica, vol. 51, no. 3, pp. 563–585, 2004. View at Scopus
  29. R. H. Wenger, “Cellular adaptation to hypoxia: o2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and o2-regulated gene expression,” The FASEB Journal, vol. 16, no. 10, pp. 1151–1162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. W. G. Kaelin Jr., “The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma,” Clinical Cancer Research, vol. 13, part 2, pp. 680s–684s, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Morris, E. N. Maina, N. V. Morgan et al., “Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppresor genes in renal cell carcinoma,” Journal of Clinical Pathology, vol. 57, no. 7, pp. 706–711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Shoshan-Barmatz, M. Zakar, K. Rosenthal, and S. Abu-Hamad, “Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase,” Biochimica Et Biophysica Acta, vol. 1787, no. 5, pp. 421–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. L. Pedersen, “Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the "warburg effect" in cancer,” Journal of Bioenergetics and Biomembranes, vol. 40, no. 3, pp. 123–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Lemasters and E. Holmuhamedov, “Voltage-dependent anion channel (VDAC) as mitochondrial governator—thinking outside the box,” Biochimica Et Biophysica Acta, vol. 1762, no. 2, pp. 181–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Mazurek, C. B. Boschek, F. Hugo, and E. Eigenbrodt, “Pyruvate kinase type m2 and its role in tumor growth and spreading,” Seminars in Cancer Biology, vol. 15, no. 4, pp. 300–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. E. van Schaftingen, L. Hue, and H. G. Hers, “Fructose 2,6-bisphosphate, the probable structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase,” Biochemical Journal, vol. 192, no. 3, pp. 897–901, 1980. View at Scopus
  37. N. Marx, H. Duez, J. C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells,” Circulation Research, vol. 94, no. 9, pp. 1168–1178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. J. Guri, R. Hontecillas, and J. Bassaganya-Riera, “Peroxisome proliferator-activated receptors: bridging metabolic syndrome with molecular nutrition,” Clinical Nutrition, vol. 25, no. 6, pp. 871–885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Vamecq and N. Latruffe, “Medical significance of peroxisome proliferator-activated receptors,” The Lancet, vol. 354, no. 9173, pp. 141–148, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. A. E. C. M. Simpson, “The cytochrome P450 4 (CYP4) family,” General Pharmacology, vol. 28, no. 3, pp. 351–359, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Kikuta, E. Kusunose, and M. Kusunose, “Prostaglandin and leukotriene ω-hydroxylases,” Prostaglandins and other Lipid Mediators, vol. 68-69, pp. 345–362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. P. Hardwick, D. Osei-Hyiaman, H. Wiland, M. A. Abdelmegeed, and B. J. Song, “PPAR/RXR regulation of fatty acid metabolism and fatty acid omega-hydroxylase (CYP4) isozymes: implications for prevention of lipotoxicity in fatty liver disease,” PPAR Research, vol. 2009, Article ID 952734, 20 pages, 2009. View at Publisher · View at Google Scholar
  43. S. Pavlides, A. Tsirigos, I. Vera et al., “Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse warburg effect”: a transcriptional informatics analysis with validation,” Cell Cycle, vol. 9, no. 11, pp. 2201–2219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Bundscherer, A. Reichle, C. Hafner, S. Meyer, and T. Vogt, “Targeting the tumor stroma with peroxisome proliferator activated receptor (PPAR) agonists,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no. 7, pp. 816–821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Hafner, A. Reichle, and T. Vogt, “New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARγ agonists, COX2 inhibitors, mTOR antagonists and metronomic chemotherapy,” Current Cancer Drug Targets, vol. 5, no. 6, pp. 393–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Panigrahy, S. Huang, M. W. Kieran, and A. Kaipainen, “PPARγ as a therapeutic target for tumor angiogenesis and metastasis,” Cancer Biology & Therapy, vol. 4, no. 7, pp. 687–693, 2005. View at Scopus
  47. A. Aljada, L. O'Connor, Y. Y. Fu, and S. A. Mousa, “PPARγ ligands, rosiglitazone and pioglitazone, inhibit βFGF- and VEGF-mediated angiogenesis,” Angiogenesis, vol. 11, no. 4, pp. 361–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Biyashev, D. Veliceasa, A. Kwiatek, M. M. Sutanto, R. N. Cohen, and O. V. Volpert, “Natural angiogenesis inhibitor signals through Erk5 activation of peroxisome proliferator-activated receptor gamma (PPARgamma),” The Journal of Biological Chemistry, vol. 285, no. 18, pp. 13517–13524, 2010.
  49. E. Scoditti, M. Massaro, M. A. Carluccio, A. Distante, C. Storelli, and R. de Caterina, “PPAR γ agonists inhibit angiogenesis by suppressing PKCα-and CREB-mediated COX2 expression in the human endothelium,” Cardiovascular Research, vol. 86, no. 2, pp. 302–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. U. E. Martinez-Outschoorn, S. Pavlides, A. Howell et al., “Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 7, pp. 1045–1051, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Pavlides, I. Vera, R. Gandara, et al., “Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis,” Antioxidants & Redox Signaling, vol. 16, no. 11, pp. 1264–1284, 2012.
  52. L. Ciuffreda, C. D. Sanza, U. C. Incani, and M. Milella, “The mTOR pathway: a new target in cancer therapy,” Current Cancer Drug Targets, vol. 10, no. 5, pp. 484–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Dewaele, H. Maes, and P. Agostinis, “ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy,” Autophagy, vol. 6, no. 7, pp. 838–854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Janku, D. J. McConkey, D. S. Hong, and R. Kurzrock, “Autophagy as a target for anticancer therapy,” Nature Reviews Clinical Oncology, vol. 8, pp. 528–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. M. Levy and A. Thorburn, “Targeting autophagy during cancer therapy to improve clinical outcomes,” Pharmacology & Therapeutics, vol. 131, no. 1, pp. 130–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Liu, Y. Cheng, Q. Liu, J. K. Bao, and J. M. Yang, “Autophagic pathways as new targets for cancer drug development,” Acta Pharmacologica Sinica, vol. 31, no. 9, pp. 1154–1164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. Q. Liu, C. Thoreen, J. Wang, D. Sabatini, and N. S. Gray, “mTOR mediated anti-cancer drug discovery,” Drug Discovery Today: Therapeutic Strategies, vol. 6, no. 2, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. J. Yang, C. E. Chee, S. Huang, and F. A. Sinicrope, “Autophagy modulation for cancer therapy,” Cancer Biology & Therapy, vol. 11, no. 2, pp. 169–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Varet, L. Vincent, P. Mirshahi et al., “Fenofibrate inhibits angiogenesis in vitro and in vivo,” Cellular and Molecular Life Sciences, vol. 60, no. 4, pp. 810–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Panigrahy, A. Kaipainen, S. Huang et al., “PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 985–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Kaipainen, M. W. Kieran, S. Huang et al., “PPARα deficiency in inflammatory cells suppresses tumor growth,” Plos ONE, vol. 2, no. 2, Article ID e260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Yokoyama, B. Xin, T. Shigeto et al., “Clofibric acid, a peroxisome proliferator-activated receptor α ligand, inhibits growth of human ovarian cancer,” Molecular Cancer Therapeutics, vol. 6, no. 4, pp. 1379–1386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Garrido-Urbani, S. Jemelin, C. Deffert et al., “Targeting vascular nadph oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism,” Plos ONE, vol. 6, no. 2, Article ID e14665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Pozzi, V. Popescu, S. Yang et al., “The anti-tumorigenic properties of peroxisomal proliferator-activated receptor α are arachidonic acid epoxygenase-mediated,” The Journal of Biological Chemistry, vol. 285, no. 17, pp. 12840–12850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Gaudel, C. Schwartz, C. Giordano, N. A. Abumrad, and P. A. Grimaldi, “Pharmacological activation of PPARβ promotes rapid and calcineur-independent fiber remodeling and angiogenesis in mouse skeletal muscle,” American Journal of Physiology, vol. 295, no. 2, pp. E297–E304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Piqueras, A. R. Reynolds, K. M. Hodivala-Dilke et al., “Activation of PPARβ/δ induces endothelial cell proliferation and angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 63–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. K. D. Wagner and N. Wagner, “Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions,” Pharmacology & Therapeutics, vol. 125, no. 3, pp. 423–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Wagner, C. Jehl-Piétri, P. Lopez et al., “Peroxisome proliferator-activated receptor β stimulation induces rapid cardiac growth and angiogenesis via direct activation of calcineurin,” Cardiovascular Research, vol. 83, no. 1, pp. 61–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Kapoor, M. Collino, S. Castiglia, R. Fantozzi, and C. Thiemermann, “Activation of peroxisome proliferator-activated receptor-β/δ attenuates myocardial ischemia/reperfusion injury in the rat,” Shock, vol. 34, no. 2, pp. 117–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T. L. Yue, S. S. Nerurkar, W. Bao et al., “In vivo activation of peroxisome proliferator-activated receptor-δ protects the heart from ischemia/reperfusion injury in zucker fatty rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 466–474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. K. J. Yin, Z. Deng, M. Hamblin, J. Zhang, and Y. E. Chen, “Vascular PPARδ protects against stroke-induced brain injury,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 3, pp. 574–581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Letavernier, J. Perez, E. Joye et al., “Peroxisome proliferator-activated receptor β/δ exerts a strong protection from ischemic acute renal failure,” Journal of the American Society of Nephrology, vol. 16, no. 8, pp. 2395–2402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Abdollahi, C. Schwager, J. Kleeff et al., “Transcriptional network governing the angiogenic switch in human pancreatic cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 31, pp. 12890–12895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Ghosh, Y. Ai, K. Narko, Z. Wang, J. M. Peters, and T. Hla, “PPARδ is pro-tumorigenic in a mouse model of COX2-induced mammary cancer,” Prostaglandins and other Lipid Mediators, vol. 88, no. 3-4, pp. 97–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Müller-Brüsselbach, M. Kömhoff, M. Rieck et al., “Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice,” The EMBO Journal, vol. 26, no. 15, pp. 3686–3698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Yoshinaga, Y. Kitamura, T. Chaen et al., “The simultaneous expression of peroxisome proliferator-activated receptor delta and cyclooxygenase-2 may enhance angiogenesis and tumor venous invasion in tissues of colorectal cancers,” Digestive Diseases and Sciences, vol. 54, no. 5, pp. 1108–1114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Meissner, I. Hrgovic, M. Doll, and R. Kaufmann, “PPARδ agonists suppress angiogenesis in a VEGFr2-dependent manner,” Archives of Dermatological Research, vol. 303, no. 1, pp. 41–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. H. Park, K. S. Lee, H. J. Lim, H. Kim, H. J. Kwak, and H. Y. Park, “The PPARδ ligand L-165041 inhibits VEGF-induced angiogenesis, but the antiangiogenic effect is not related to PPARδ,” Journal of Cellular Biochemistry, vol. 113, no. 6, pp. 1947–1954, 2012. View at Publisher · View at Google Scholar
  79. J. L. Hatton and L. D. Yee, “Clinical use of PPARγ ligands in cancer,” PPAR Research, vol. 2008, Article ID 159415, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. R. A. Nemenoff, M. Weiser-Evans, and R. A. Winn, “Activation and molecular targets of peroxisome proliferator-activated receptor-γ ligands in lung cancer,” PPAR Research, vol. 2008, Article ID 156875, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Michalik and W. Wahli, “PPARs mediate lipid signaling in inflammation and cancer,” PPAR Research, vol. 2008, Article ID 134059, 15 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Burgermeister and R. Seger, “PPARγ and MEK interactions in cancer,” PPAR Research, vol. 2008, Article ID 309469, 16 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. H. A. Elrod and S. Y. Sun, “PPARγ and apoptosis in cancer,” PPAR Research, vol. 2008, Article ID 704165, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Grabacka and K. Reiss, “Anticancer properties of PPARα—effects on cellular metabolism and inflammation,” PPAR Research, vol. 2008, Article ID 930705, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Galluzzi, O. Kepp, N. Tajeddine, and G. Kroemer, “Disruption of the hexokinase-VDAC complex for tumor therapy,” Oncogene, vol. 27, no. 34, pp. 4633–4635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. R. A. Roberts, “Non-genotoxic hepatocarcinogenesis: suppression of apoptosis by peroxisome proliferators,” Annals of the New York Academy of Sciences, vol. 804, pp. 588–611, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. R. A. Roberts, N. H. James, N. J. Woodyatt, N. Macdonald, and J. D. Tugwood, “Evidence for the suppression of apoptosis by the peroxisome proliferator activated receptor alpha (PPARα),” Carcinogenesis, vol. 19, no. 1, pp. 43–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. R. A. Roberts, C. Michel, B. Coyle, C. Freathy, K. Cain, and E. Boitier, “Regulation of apoptosis by peroxisome proliferators,” Toxicology Letters, vol. 149, no. 1–3, pp. 37–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. R. A. Roberts, D. W. Nebert, J. A. Hickman, J. H. Richburg, and T. L. Goldsworthy, “Perturbation of the mitosis/apoptosis balance: a fundamental mechanism in toxicology,” Fundamental and Applied Toxicology, vol. 38, no. 2, pp. 107–115, 1997. View at Publisher · View at Google Scholar · View at Scopus
  90. J. P. Vanden Heuvel, “Peroxisome proliferator-activated receptors (PPARs) and carcinogenesis,” Toxicological Sciences, vol. 47, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Chinetti, S. Griglio, M. Antonucci et al., “Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages,” The Journal of Biological Chemistry, vol. 273, no. 40, pp. 25573–25580, 1998. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Muzio, M. Maggiora, M. Oraldi, A. Trombetta, and R. A. Canuto, “PPARα and PP2A are involved in the proapoptotic effect of conjugated linoleic acid on human hepatoma cell line SK-HEP-1,” International Journal of Cancer, vol. 121, no. 11, pp. 2395–2401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Xiao, S. P. Anderson, C. Swanson et al., “Activation of peroxisome proliferator-activated receptor alpha enhances apoptosis in the mouse liver,” Toxicological Sciences, vol. 92, no. 2, pp. 368–377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. A. L. Thompson and G. J. Cooney, “Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance,” Diabetes, vol. 49, no. 11, pp. 1761–1765, 2000. View at Scopus
  95. A. Vandercammen and E. van Schaftingen, “Competitive inhibition of liver glucokinase by its regulatory protein,” European Journal of Biochemistry, vol. 200, no. 2, pp. 545–551, 1991. View at Scopus
  96. K. Schoonjans, B. Staels, and J. Auwerx, “Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression,” Journal of Lipid Research, vol. 37, no. 5, pp. 907–925, 1996. View at Scopus
  97. G. Martin, K. Schoonjans, A. M. Lefebvre, B. Staels, and J. Auwerx, “Coordinate regulation of the expression of the fatty acid transport protein and Acyl-CoA synthetase genes by PPARα and PPARγ activators,” The Journal of Biological Chemistry, vol. 272, no. 45, pp. 28210–28217, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Martin, H. Poirier, N. Hennuyer et al., “Induction of the fatty acid transport protein 1 and Acyl-CoA synthase genes by dimer-selective rexinoids suggests that the peroxisome proliferator-activated receptor-retinoid X receptor heterodimer is their molecular target,” The Journal of Biological Chemistry, vol. 275, no. 17, pp. 12612–12618, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Basu-Modak, O. Braissant, P. Escher, B. Desvergne, P. Honegger, and W. Wahli, “Peroxisome proliferator-activated receptor β regulates Acyl-CoA synthetase 2 in reaggregated rat brain cell cultures,” The Journal of Biological Chemistry, vol. 274, no. 50, pp. 35881–35888, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Ramaswamy, M. A. Karim, K. G. Murti, and S. Jackowski, “PPARα controls the intracellular coenzyme a concentration via regulation of pank1α gene expression,” Journal of Lipid Research, vol. 45, no. 1, pp. 17–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Helledie, L. Grøntved, S. S. Jensen et al., “The gene encoding the Acyl-CoA-binding protein is activated by peroxisome proliferator-activated receptor γ through an intronic response element functionally conserved between humans and rodents,” The Journal of Biological Chemistry, vol. 277, no. 30, pp. 26821–26830, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. M. B. Sandberg, M. Bloksgaard, D. Duran-Sandoval, C. Duval, B. Staels, and S. Mandrup, “The gene encoding Acyl-CoA-binding protein is subject to metabolic regulation by both sterol regulatory element-binding protein and peroxisome proliferator-activated receptor α in hepatocytes,” The Journal of Biological Chemistry, vol. 280, no. 7, pp. 5258–5266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. J. T. Rasmussen, J. Rosendal, and J. Knudsen, “Interaction of Acyl-CoA binding protein (ACBP) on processes for which Acyl-CoA is a substrate, product or inhibitor,” Biochemical Journal, vol. 292, no. 3, pp. 907–913, 1993. View at Scopus
  104. J. Knudsen, S. Mandrup, J. T. Rasmussen, P. H. Andreasen, F. Poulsen, and K. Kristiansen, “The function of Acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor (DBI),” Molecular and Cellular Biochemistry, vol. 123, no. 1-2, pp. 129–138, 1993. View at Scopus
  105. M. Bronfman, M. N. Morales, L. Amigo et al., “Hypolipidaemic drugs are activated to Acyl-CoA esters in isolated rat hepatocytes: detection of drug activation by human liver homogenates and by human platelets,” Biochemical Journal, vol. 284, no. 1, pp. 289–295, 1992. View at Scopus
  106. A. Aarsland and R. K. Berge, “Peroxisome proliferating sulphur- and oxysubstituted fatty acid analogues are activated to acyl coenzyme a thioesters,” Biochemical Pharmacology, vol. 41, no. 1, pp. 53–61, 1991. View at Publisher · View at Google Scholar · View at Scopus
  107. P. I. Eacho and P. S. Foxworthy, “Inhibition of hepatic fatty acid oxidation by bezafibrate and bezafibroyl coa,” Biochemical and Biophysical Research Communications, vol. 157, no. 3, pp. 1148–1153, 1988. View at Scopus
  108. M. S. R. Murthy and S. V. Pande, “Malonyl-coa binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 2, pp. 378–382, 1987. View at Scopus
  109. K. Kashfi and G. A. Cook, “Topology of hepatic mitochondrial carnitine palmitoyltransferase i,” Advances in Experimental Medicine and Biology, vol. 466, pp. 27–42, 1999. View at Scopus
  110. A. J. Gilde, K. A. van der Lee , P. H. Willemsen, et al., “Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism,” Circulation Research, vol. 92, no. 5, pp. 518–524, 2003.
  111. J. C. Fruchart, P. Duriez, and B. Staels, “Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis,” Current Opinion in Lipidology, vol. 10, no. 3, pp. 245–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Baldán, J. Relat, P. F. Marrero, and D. Haro, “Functional interaction between peroxisome proliferator-activated receptors-alpha; and Mef-2C on human carnitine palmitoyltransferase 1β (CPT1β) gene activation,” Nucleic Acids Research, vol. 32, no. 16, pp. 4742–4749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. F. M. Campbell, R. Kozak, and A. Wagner et al, “A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase,” The Journal of Biological Chemistry, vol. 277, no. 6, pp. 4098–4103, 2002.
  114. Y. Lee, X. Yu, F. Gonzales et al., “PPARα is necessary for the lipopenic action of hyperleptinemia on white adipose and liver tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11848–11853, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Ringseis, S. Luci, J. Spielmann et al., “Clofibrate treatment up-regulates novel organic cation transporter (octn)-2 in tissues of pigs as a model of non-proliferating species,” European Journal of Pharmacology, vol. 583, no. 1, pp. 11–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Ringseis and K. Eder, “Influence of pharmacological PPARα activators on carnitine homeostasis in proliferating and non-proliferating species,” Pharmacological Research, vol. 60, no. 3, pp. 179–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. M. J. Barrero, N. Camarero, P. F. Marrero, and D. Haro, “Control of human carnitine palmitoyltransferase II gene transcription by peroxisome proliferator-activated receptor through a partially conserved peroxisome proliferator-responsive element,” Biochemical Journal, vol. 369, no. 3, pp. 721–729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. F. Djouadi, F. Aubey, D. Schlemmer et al., “Bezafibrate increases very-long-chain Acyl-CoA dehydrogenase protein and mrna expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders,” Human Molecular Genetics, vol. 14, no. 18, pp. 2695–2703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Gulick, S. Cresci, T. Caira, D. D. Moore, and D. P. Kelly, “The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 11012–11016, 1994. View at Publisher · View at Google Scholar · View at Scopus
  120. I. Samudio, R. Harmancey, M. Fiegl et al., “Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 142–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Hong, I. Samudio, S. Chintharlapalli, and S. Safe, “1,1-bis(3′-indolyl)-1-(p-substituted phenyl)methanes decrease mitochondrial membrane potential and induce apoptosis in endometrial and other cancer cell lines,” Molecular Carcinogenesis, vol. 47, no. 7, pp. 492–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Baron, T. Migita, D. Tang, and M. Loda, “Fatty acid synthase: a metabolic oncogene in prostate cancer?” Journal of Cellular Biochemistry, vol. 91, no. 1, pp. 47–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. R. Flavin, G. Zadra, and M. Loda, “Metabolic alterations and targeted therapies in prostate cancer,” Journal of Pathology, vol. 223, no. 2, pp. 283–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. F. P. Kuhajda, “Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology,” Nutrition, vol. 16, no. 3, pp. 202–208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  125. F. P. Kuhajda, “Fatty acid synthase and cancer: new application of an old pathway,” Cancer Research, vol. 66, no. 12, pp. 5977–5980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Vamecq, A. F. Dessein, M. Fontaine, et al., “Mitochondrial dysfunction and lipid homeostasis,” Current Drug Metabolism. In press.
  127. T. W. Grunt, R. Wagner, M. Grusch et al., “Interaction between fatty acid synthase- and ErbB-systems in ovarian cancer cells,” Biochemical and Biophysical Research Communications, vol. 385, no. 3, pp. 454–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. Q. Jin, L. X. Yuan, D. Boulbes et al., “Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells,” Breast Cancer Research, vol. 12, no. 6, article R96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Kumar-Sinha, K. W. Ignatoski, M. E. Lippman, S. P. Ethier, and A. M. Chinnaiyan, “Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis,” Cancer Research, vol. 63, no. 1, pp. 132–139, 2003. View at Scopus
  130. J. A. Menendez, “Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives,” Biochimica Et Biophysica Acta, vol. 1801, no. 3, pp. 381–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. A. Menendez, L. Vellon, I. Mehmi et al., “Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (ErbB-2) oncogene overexpression in cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10715–10720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Vazquez-Martin, R. Colomer, J. Brunet, R. Lupu, and J. A. Menendez, “Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells,” Cell Proliferation, vol. 41, no. 1, pp. 59–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Vazquez-Martin, J. M. Fernandez-Real, C. Oliveras-Ferraros et al., “Fatty acid synthase activity regulates HER2 extracellular domain shedding into the circulation of HER2-positive metastatic breast cancer patients,” International Journal of Oncology, vol. 35, no. 6, pp. 1369–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Kourtidis, R. Srinivasaiah, R. D. Carkner, M. J. Brosnan, and D. S. Conklin, “Peroxisome proliferator-activated receptor-γ protects ErbB2-positive breast cancer cells from palmitate toxicity,” Breast Cancer Research, vol. 11, no. 2, article R16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Kourtidis, R. Jain, R. D. Carkner, C. Eifert, M. J. Brosnan, and D. S. Conklin, “An rna interference screen identifies metabolic regulators NR1D1 and PBP as novel survival factors for breast cancer cells with the ErbB2 signature,” Cancer Research, vol. 70, no. 5, pp. 1783–1792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Vazquez-Martin, F. J. Ortega-Delgado, J. M. Fernandez-Real, and J. A. Menendez, “The tyrosine kinase receptor HER2 (ErbB-2): from oncogenesis to adipogenesis,” Journal of Cellular Biochemistry, vol. 105, no. 5, pp. 1147–1152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. U. Risérus, D. Sprecher, T. Johnson et al., “Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men,” Diabetes, vol. 57, no. 2, pp. 332–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Azhar, “Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease,” Future Cardiology, vol. 6, no. 5, pp. 657–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. L. Salvadó , L. Serrano-Marco, E. Barroso, X. Palomer, and M. Vázquez-Carrera, “Targeting PPARβ/δ for the treatment of type 2 diabetes mellitus,” Expert Opinion on Therapeutic Targets, vol. 16, no. 2, pp. 209–223, 2012. View at Publisher · View at Google Scholar
  140. S. Tyagi, P. Gupta, A. S. Saini, C. Kaushal, and S. Sharma, “The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases,” Journal of Advanced Pharmaceutical Technology & Research, vol. 2, no. 4, pp. 236–240, 2011.
  141. A. Gutgesell, G. Wen, B. König B, et al., “Mouse carnitine-acylcarnitine translocase (CACT) is transcriptionally regulated by PPARalpha and PPARdelta in liver cells,” Biochimica Biophysica Acta, vol. 1790, no. 10, pp. 1206–1216, 2009.
  142. J. Wan, L. Jiang, Q. Lü, L. Ke, X. Li, and N. Tong, “Activation of PPARdelta up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic beta-cells,” Biochemical Biophysical Research Communications, vol. 391, no. 3, pp. 1567–1572, 2010.
  143. B. M. Jucker, D. Yang, W. M. Casey et al., “Selective PPARδ agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study,” American Journal of Physiology, vol. 293, no. 5, pp. E1256–E1264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. D. M. Muoio, P. S. MacLean, D. B. Lang, et al., “Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta,” The Journal of Biological Chemistry, vol. 277, no. 29, pp. 26089–26097, 2002.
  145. R. Scatena, P. Bottoni, and B. Giardina, “Mitochondria, PPARs, and cancer: is receptor-independent action of PPAR agonists a key?” PPAR Research, vol. 2008, Article ID 256251, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. P. L. Feldman, M. H. Lambert, and B. R. Henke, “PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors?” Current Topics in Medicinal Chemistry, vol. 8, no. 9, pp. 728–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Pothiwala, S. K. Jain, and S. Yaturu, “Metabolic syndrome and cancer,” Metabolic Syndrome and Related Disorders, vol. 7, no. 4, pp. 279–287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. G. D. Demetri, C. D. M. Fletcher, E. Mueller et al., “Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3951–3956, 1999. View at Scopus
  149. G. Debrock, V. Vanhentenrijk, R. Sciot, M. Debiec-Rychter, R. Oyen, and A. van Oosterom, “A phase II trial with rosiglitazone in liposarcoma patients,” British Journal of Cancer, vol. 89, no. 8, pp. 1409–1412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Mueller, M. Smith, P. Sarraf et al., “Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 10990–10995, 2000. View at Scopus
  151. D. Paltoo, K. Woodson, P. Taylor, D. Albanes, J. Virtamo, and J. Tangrea, “Pro12ala polymorphism in the peroxisome proliferator-activated receptor-gamma (PPAR-γ) gene and risk of prostate cancer among men in a large cancer prevention study,” Cancer Letters, vol. 191, no. 1, pp. 67–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. Y. Xu, S. Iyengar, R. L. Roberts, S. B. Shappell, and D. M. Peehl, “Primary culture model of peroxisome proliferator-activated receptor γ activity in prostate cancer cells,” Journal of Cellular Physiology, vol. 196, no. 1, pp. 131–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. N. A. Dawson and S. F. Slovin, “Novel approaches to treat asymptomatic, hormone-naive patients with rising prostate-specific antigen after primary treatment for prostate cancer,” Urology, vol. 62, no. 1, pp. 102–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  154. M. R. Smith, J. Manola, D. S. Kaufman et al., “Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy,” Cancer, vol. 101, no. 7, pp. 1569–1574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. M. W. Saif, H. Oettle, W. L. Vervenne et al., “Randomized double-blind phase II trial comparing gemcitabine plus ly293111 versus gemcitabine plus placebo in advanced adenocarcinoma of the pancreas,” Cancer Journal, vol. 15, no. 4, pp. 339–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. M. H. Kulke, G. D. Demetri, N. E. Sharpless et al., “A phase II study of troglitazone, an activator of the PPARγ receptor, in patients with chemotherapy-resistant metastatic colorectal cancer,” Cancer Journal, vol. 8, no. 5, pp. 395–399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. I. K. Choi, Y. H. Kim, J. S. Kim, and J. H. Seo, “PPAR-γ ligand promotes the growth of apc-mutated ht-29 human colon cancer cells in vitro and in vivo,” Investigational New Drugs, vol. 26, no. 3, pp. 283–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. Dai and W. H. Wang, “Peroxisome proliferator-activated receptor γ and colorectal cancer,” World Journal of Gastrointestinal Oncology, vol. 2, no. 3, pp. 159–164, 2010.
  159. A. Tenenbaum, V. Boyko, E. Z. Fisman et al., “Does the lipid-lowering peroxisome proliferator-activated receptors ligand bezafibrate prevent colon cancer in patients with coronary artery disease?” Cardiovascular Diabetology, vol. 7, article no. 18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. H. J. Burstein, G. D. Demetri, E. Mueller, P. Sarraf, B. M. Spiegelman, and E. P. Winer, “Use of the peroxisome proliferator-activated receptor (PPAR) γ ligand troglitazone as treatment for refractory breast cancer: a phase II study,” Breast Cancer Research and Treatment, vol. 79, no. 3, pp. 391–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. H. M. Faddy, J. A. Robinson, W. J. Lee, N. A. Holman, G. R. Monteith, and S. J. Roberts-Thomson, “Peroxisome proliferator-activated receptor α expression is regulated by estrogen receptor α and modulates the response of mcf-7 cells to sodium butyrate,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 2, pp. 255–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. Y. Y. Zaytseva, X. Wang, R. C. Southard, N. K. Wallis, and M. W. Kilgore, “Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in mcf-7 breast cancer cells,” Molecular Cancer, vol. 7, article no. 90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. H. Hasegawa, Y. Yamada, K. Komiyama et al., “A novel natural compound, a cycloanthranilylproline derivative (fuligocandin b), sensitizes leukemia cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (trail) through 15-deoxy-δ12,14 prostaglandin j2 production,” Blood, vol. 110, no. 5, pp. 1664–1674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. T. Tsao, S. Kornblau, S. Safe et al., “Role of peroxisome proliferator-activated receptor-γ and its coactivator drip205 in cellular responses to cddo (rta-401) in acute myelogenous leukemia,” Cancer Research, vol. 70, no. 12, pp. 4949–4960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. E. Kebebew, M. Peng, E. Reiff et al., “A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer,” Surgery, vol. 140, no. 6, pp. 960–967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Tepmongkol, S. Keelawat, S. Honsawek, and P. Ruangvejvorachai, “Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma,” Thyroid, vol. 18, no. 7, pp. 697–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. C. J. Yao, G. M. Lai, C. F. Chan, A. L. Cheng, Y. Y. Yang, and S. E. Chuang, “Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone,” International Journal of Cancer, vol. 118, no. 3, pp. 773–779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. P. Hau, L. Kunz-Schughart, U. Bogdahn et al., “Low-dose chemotherapy in combination with COX2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas—a phase II study,” Oncology, vol. 73, no. 1-2, pp. 21–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Schweitzer, S. K. Knauer, and R. H. Stauber, “Nuclear receptors in head and neck cancer: current knowledge and perspectives,” International Journal of Cancer, vol. 126, no. 4, pp. 801–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. T. Botton, A. Puissant, P. Bahadoran et al., “In vitro and in vivo anti-melanoma effects of ciglitazone,” Journal of Investigative Dermatology, vol. 129, no. 5, pp. 1208–1218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Galli, T. Mello, E. Ceni, E. Surrenti, and C. Surrenti, “The potential of antidiabetic thiazolidinediones for anticancer therapy,” Expert Opinion on Investigational Drugs, vol. 15, no. 9, pp. 1039–1049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. C. Giaginis, A. Tsantili-Kakoulidou, and S. Theocharis, “Peroxisome proliferator-activated receptor-γ ligands: potential pharmacological agents for targeting the angiogenesis signaling cascade in cancer,” PPAR Research, vol. 2008, Article ID 431763, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. C. Grommes, G. E. Landreth, and M. T. Heneka, “Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists,” The Lancet Oncology, vol. 5, no. 7, pp. 419–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. S. Han and J. Roman, “Peroxisome proliferator-activated receptor γ: a novel target for cancer therapeutics?” Anti-Cancer Drugs, vol. 18, no. 3, pp. 237–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  175. S. B. Leibowitz and P. W. Kantoff, “Differentiating agents and the treatment of prostate cancer: vitamin d 3 and peroxisome proliferator-activated receptor gamma ligands,” Seminars in Oncology, vol. 30, no. 5, pp. 698–708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  176. S. M. Lippman and R. Lotan, “Advances in the development of retinoids as chemopreventive agents,” Journal of Nutrition, vol. 130, no. 2S, supplement, pp. 479S–482S, 2000.
  177. S. S. Palakurthi, H. Aktas, L. M. Grubissich, R. M. Mortensen, and J. A. Halperin, “Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation,” Cancer Research, vol. 61, no. 16, pp. 6213–6218, 2001. View at Scopus
  178. D. Panigrahy, L. Q. Shen, M. W. Kieran, and A. Kaipainen, “Therapeutic potential of thiazolidinediones as anticancer agents,” Expert Opinion on Investigational Drugs, vol. 12, no. 12, pp. 1925–1937, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. M. A. K. Rumi, S. Ishihara, H. Kazumori, Y. Kadowaki, and Y. Kinoshita, “Can prarγ ligands be used in cancer therapy?” Current Medicinal Chemistry—Anti-cancer Agents, vol. 4, no. 6, pp. 465–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Shimizu and H. Moriwaki, “Synergistic effects of PPARγ ligands and retinoids in cancer treatment,” PPAR Research, vol. 2008, Article ID 181047, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. F. Tosetti, N. Ferrari, S. de Flora, and A. Albini, “Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents,” The FASEB Journal, vol. 16, no. 1, pp. 2–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. T. Botton, A. Puissant, Y. Cheli et al., “Ciglitazone negatively regulates cxcl1 signaling through mitf to suppress melanoma growth,” Cell Death and Differentiation, vol. 18, no. 1, pp. 109–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. R. A. Roberts, N. H. James, S. C. Hasmall et al., “Apoptosis and proliferation in nongenotoxic carcinogenesis: species differences and role of PPARα,” Toxicology Letters, vol. 112-113, pp. 49–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  184. K. Schultze, B. Böck, A. Eckert et al., “Troglitazone sensitizes tumor cells to trail-induced apoptosis via down-regulation of flip and survivin,” Apoptosis, vol. 11, no. 9, pp. 1503–1512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. K. Grund, R. Ahmadi, F. Jung et al., “Troglitazone-mediated sensitization to trail-induced apoptosis is regulated by proteasome-dependent degradation of flip and erk1/2-dependent phosphorylation of bad,” Cancer Biology & Therapy, vol. 7, no. 12, pp. 1982–1990, 2008. View at Scopus