About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2012 (2012), Article ID 318613, 17 pages
http://dx.doi.org/10.1155/2012/318613
Review Article

Modulation of PPAR-γ by Nutraceutics as Complementary Treatment for Obesity-Related Disorders and Inflammatory Diseases

1Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, camino Ing. R. Padilla Sánchez 2100, Las Agujas, 44600 Zapopan JAL, Mexico
2Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., 44270 Guadalajara, JAL, Mexico
3Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, 44430 Tlaquepaque, JAL, Mexico
4Departamento de Ciencias Ambientales, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, 45100, JAL, Mexico
5Departamento de Investigación Básica, Instituto Nacional de Geriatría (INGER), Periférico Sur No. 2767, Col, San Jerónimo Lídice, Delegación Magdalena Contreras 10200, México DF, Mexico

Received 22 August 2012; Revised 3 October 2012; Accepted 23 October 2012

Academic Editor: Bruce Blumberg

Copyright © 2012 D. Ortuño Sahagún et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tenenbaum, E. Z. Fisman, and M. Motro, “Metabolic syndrome and type 2 diabetes mellitus: focus on peroxisome proliferator activated receptors (PPAR),” Cardiovascular Diabetology, vol. 2, article 4, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Desvergne, L. Michalik, and W. Wahli, “Be fit or be sick: peroxisome proliferator-activated receptors are down the road,” Molecular Endocrinology, vol. 18, no. 6, pp. 1321–1332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, “From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions,” Progress in Lipid Research, vol. 45, no. 2, pp. 120–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Grimaldi, “Peroxisome proliferator-activated receptors as sensors of fatty acids and derivatives,” Cellular and Molecular Life Sciences, vol. 64, no. 19-20, pp. 2459–2464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Tontonoz, S. Singer, B. M. Forman et al., “Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 237–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Yoshizawa, D. P. Cioca, S. Kawa, E. Tanaka, and K. Kiyosawa, “Peroxisome proliferator-activated receptor γ ligand troglitazone induces cell cycle arrest and apoptosis of hepatocellular carcinoma cell lines,” Cancer, vol. 95, no. 10, pp. 2243–2251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Nolan, B. Ludvik, P. Beerdsen, M. Joyce, and J. Olefsky, “Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone,” The New England Journal of Medicine, vol. 331, no. 18, pp. 1188–1193, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Rizzo, M. Disante, A. Mencarelli et al., “The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo,” Molecular Pharmacology, vol. 70, no. 4, pp. 1164–1173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Abdelkarim, S. Caron, C. Duhem et al., “The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-γ and interfering with the Wnt/β-catenin pathways,” The Journal of Biological Chemistry, vol. 285, no. 47, pp. 36759–36767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. P. Brun, J. B. Kim, E. Hu, and B. M. Spiegelman, “Peroxisome proliferator-activated receptor gamma and the control of adipogenesis,” Current Opinion in Lipidology, vol. 8, no. 4, pp. 212–218, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. I. Lefterova and M. A. Lazar, “New developments in adipogenesis,” Trends in Endocrinology and Metabolism, vol. 20, no. 3, pp. 107–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Rangwala and M. A. Lazar, “Transcriptional control of adipogenesis,” Annual Review of Nutrition, vol. 20, pp. 535–559, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. E. D. Rosen and B. M. Spiegelman, “Molecular regulation of adipogenesis,” Annual Review of Cell and Developmental Biology, vol. 16, pp. 145–171, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. P. G. P. Martin, H. Guillou, F. Lasserre et al., “Novel aspects of PPARα-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study,” Hepatology, vol. 45, no. 3, pp. 767–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Suh, Y. Wang, C. R. Williams et al., “A new ligand for the peroxisome proliferator-activated receptor-γ (PPAR-γ), GW7845, inhibits rat mammary carcinogenesis,” Cancer Research, vol. 59, no. 22, pp. 5671–5673, 1999. View at Scopus
  18. P. H. Brown and S. M. Lippman, “Chemoprevention of breast cancer,” Breast Cancer Research and Treatment, vol. 62, no. 1, pp. 1–17, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. S. I. Anghel and W. Wahli, “Fat poetry: a kingdom for PPARγ,” Cell Research, vol. 17, no. 6, pp. 486–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Gurnell, “‘Striking the right balance’ in targeting PPARγ in the metabolic syndrome: novel insights from human genetic studies,” PPAR Research, Article ID 83593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. E. Kershaw and J. S. Flier, “Adipose tissue as an endocrine organ,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2548–2556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. D. Wu, “Is there a role for PPARγ in IBD? Yes, no, maybe,” Gastroenterology, vol. 124, no. 5, pp. 1538–1542, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. W. Nesto, D. Bell, R. O. Bonow et al., “Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association,” Diabetes Care, vol. 27, no. 1, pp. 256–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Mencarelli, E. Distrutti, B. Renga et al., “Probiotics modulate intestinal expression of nuclear receptor and provide Counter-Regulatory signals to Inflammation-Driven adipose tissue activation,” PLoS ONE, vol. 6, no. 7, article e22978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Cho and Y. Momose, “Peroxisome proliferator-activated receptor γ agonists as insulin sensitizers: from the discovery to recent progress,” Current Topics in Medicinal Chemistry, vol. 8, no. 17, pp. 1483–1507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. V. Rizos, M. S. Elisaf, D. P. Mikhailidis, and E. N. Liberopoulos, “How safe is the use of thiazolidinediones in clinical practice?” Expert Opinion on Drug Safety, vol. 8, no. 1, pp. 15–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the 30 years from 1981 to 2010,” Journal of Natural Products, vol. 75, no. 3, pp. 311–335, 2012.
  28. O. Rau, M. Wurglics, A. Paulke et al., “Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma,” Planta Medica, vol. 72, no. 10, pp. 881–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Paliyath, M. Bakovic K, and Shetty, Functional Foods, Nutraceuticals, and Degenerative Disease Prevention, John Wiley & Sons, 1st edition, 2011.
  30. D. W. Haslam and W. P. T. James, “Obesity,” The Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. T. Diplock, P. J. Aggett, M. Ashwell, F. Bornet, E. B. Fern, and M. B. Roberfroid, “Scientific concepts of functional foods in Europe: consensus document,” British Journal of Nutrition, vol. 81, no. 1, pp. I–27, 1999. View at Scopus
  32. M. Subirade, Report on Functional Foods, Food Quality and Standards Service (AGNS) and Food and Agriculture Organization of the United Nations (FAOS), Rome, Italy, 2007.
  33. M. J. Amiot and D. Lairon, “Fruit and vegetables, cardiovascular disease, diabetes and obesity,” in Improving the Health-Promoting Properties of Fruit and Vegetable Products, F. A. Tomás-Barberán and M. I. Gil, Eds., pp. 95–118, CRC Press, Boca Raton, Fla, USA, 2010.
  34. J. Von Lintig, “Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism,” Annual Review of Nutrition, vol. 30, pp. 35–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. O. P. García, K. Z. Long, and J. L. Rosado, “Impact of micronutrient deficiencies on obesity,” Nutrition Reviews, vol. 67, no. 10, pp. 559–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. E. S. Ford, J. C. Will, B. A. Bowman, and K. M. V. Narayan, “Diabetes mellitus and serum carotenoids: findings from the Third National Health and Nutrition Examination Survey,” American Journal of Epidemiology, vol. 149, no. 2, pp. 168–176, 1999. View at Scopus
  37. K. Ylönen, G. Alfthan, L. Groop, C. Saloranta, A. Aro, and S. M. Virtanen, “Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: the Botnia Dietary Study,” American Journal of Clinical Nutrition, vol. 77, no. 6, pp. 1434–1441, 2003. View at Scopus
  38. T. Coyne, T. I. Ibiebele, P. D. Baade et al., “Diabetes mellitus and serum carotenoids: findings of a population-based study in Queensland, Australia,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 685–693, 2005. View at Scopus
  39. V. Ramakrishna and R. Jailkhani, “Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients,” Acta Diabetologica, vol. 45, no. 1, pp. 41–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. T. L. Burrows, J. M. Warren, K. Colyvas, M. L. Garg, and C. E. Collins, “Validation of overweight children's fruit and vegetable intake using plasma carotenoids,” Obesity, vol. 17, no. 1, pp. 162–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Hessel, A. Eichinger, A. Isken et al., “CMO1 deficiency abolishes vitamin a production from β-carotene and alters lipid metabolism in mice,” The Journal of Biological Chemistry, vol. 282, no. 46, pp. 33553–33561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Boulanger, P. McLemore, N. G. Copeland et al., “Identification of beta-carotene 15, 159-monooxygenase as a peroxisome proliferator-activated receptor target gene,” The FASEB Journal, vol. 17, no. 10, pp. 1304–1306, 2003. View at Scopus
  43. X. Gong, S. W. Tsai, B. Yan, and L. P. Rubin, “Cooperation between MEF2 and PPARγ in human intestinal β,β-carotene 15, 159-monooxygenase gene expression,” BMC Molecular Biology, vol. 7, article 7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. G. P. Lobo, J. Amengual, H. N. M. Li et al., “β,β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner,” The Journal of Biological Chemistry, vol. 285, no. 36, pp. 27891–27899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Ziouzenkova, G. Orasanu, M. Sharlach et al., “Retinaldehyde represses adipogenesis and diet-induced obesity,” Nature Medicine, vol. 13, no. 6, pp. 695–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. O. Ziouzenkova, G. Orasanu, G. Sukhova et al., “Asymmetric cleavage of β-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses,” Molecular Endocrinology, vol. 21, no. 1, pp. 77–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. W. L. Stone, K. Krishnan, S. E. Campbell, M. Qui, S. G. Whaley, and H. Yang, “Tocopherols and the treatment of colon cancer,” Annals of the New York Academy of Sciences, vol. 1031, pp. 223–233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. E. Campbell, W. L. Stone, S. G. Whaley, M. Qui, and K. Krishnan, “Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines,” BMC Cancer, vol. 3, article 25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. D. C. Berry and N. Noy, “All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor β/δ and retinoic acid receptor,” Molecular and Cellular Biology, vol. 29, no. 12, pp. 3286–3296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. P. M. Kris-Etherton, W. S. Harris, and L. J. Appel, “Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease,” Circulation, vol. 106, no. 21, pp. 2747–2757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Flachs, V. Mohamed-Ali, O. Horakova et al., “Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet,” Diabetologia, vol. 49, no. 2, pp. 394–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Hwang, “Fatty acids and immune responses—a new perspective in searching for clues to mechanism,” Annual Review of Nutrition, vol. 20, pp. 431–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Belury, “Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action,” Annual Review of Nutrition, vol. 22, pp. 505–531, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. O. Mezei, W. J. Banz, R. W. Steger, M. R. Peluso, T. A. Winters, and N. Shay, “Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells,” Journal of Nutrition, vol. 133, no. 5, pp. 1238–1243, 2003. View at Scopus
  55. A. S. Wilkinson, G. R. Monteith, P. N. Shaw, C. N. Lin, M. J. Gidley, and S. J. Roberts-Thomson, “Effects of the mango components mangiferin and quercetin and the putative mangiferin metabolite norathyriol on the transactivation of peroxisome proliterator-activated receptor isoforms,” Journal of Agricultural and Food Chemistry, vol. 56, no. 9, pp. 3037–3042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Sangeetha and S. D. Quine, “Protective effect of S-allyl cysteine sulphoxide (alliin) on glycoproteins and hematology in isoproterenol induced myocardial infarction in male Wistar rats,” Journal of Applied Toxicology, vol. 28, no. 5, pp. 710–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. G. J. Kelloff, C. W. Boone, J. A. Crowell, V. E. Steele, R. Lubet, and C. C. Sigman, “Chemopreventive drug development: perspectives and progress,” Cancer Epidemiology Biomarkers and Prevention, vol. 3, no. 1, pp. 85–98, 1994. View at Scopus
  58. S. Ulrich, S. M. Loitsch, O. Rau et al., “Peroxisome proliferator-activated receptor γ as a molecular target of resveratrol-induced modulation of polyamine metabolism,” Cancer Research, vol. 66, no. 14, pp. 7348–7354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Alberdi, V. M. Rodríguez, J. Miranda et al., “Changes in white adipose tissue metabolism induced by resveratrol in rats,” Nutrition and Metabolism, vol. 8, no. 1, article 29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Lee, H. Kim, U. Youn et al., “Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells,” Planta Medica, vol. 76, no. 14, pp. 1558–1563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. N. M. Delzenne and C. M. Williams, “Prebiotics and lipid metabolism,” Current Opinion in Lipidology, vol. 13, no. 1, pp. 61–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Czerucka, S. Dahan, B. Mograbi, B. Rossi, and P. Rampal, “Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells,” Infection and Immunity, vol. 68, no. 10, pp. 5998–6004, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. A. C. P. Rodrigues, D. C. Cara, S. H. G. G. Fretez et al., “Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice,” Journal of Applied Microbiology, vol. 89, no. 3, pp. 404–414, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Eroglu, D. P. Hruszkewycz, R. W. Curley, and E. H. Harrison, “The eccentric cleavage product of β-carotene, β-apo-13-carotenone, functions as an antagonist of RXRα,” Archives of Biochemistry and Biophysics, vol. 504, no. 1, pp. 11–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Amengual, E. Gouranton, Y. G. J. van Helden et al., “Beta-carotene reduces body adiposity of mice via BCMO1,” PLoS ONE, vol. 6, no. 6, Article ID e20644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Wang and P. J. Quinn, “Vitamin E and its function in membranes,” Progress in Lipid Research, vol. 38, no. 4, pp. 309–336, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Constantinou, A. Papas, and A. I. Constantinou, “Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs,” International Journal of Cancer, vol. 123, no. 4, pp. 739–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. G. Traber, “Vitamin E regulatory mechanisms,” Annual Review of Nutrition, vol. 27, pp. 347–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. M. G. Traber, “Vitamin E,” in Modern Nutrition in Health and Disease, ShilsME, ShikeM, A. C. Ross, B. Caballero, and R. J. Cousins, Eds., pp. 396–411, Lippincott Williams and Wilkins, Baltimore, Md, USA, 10th edition, 2006.
  70. M. H. Fenner and E. Elstner, “Peroxisome proliferator-activated receptor-γ ligands for the treatment of breast cancer,” Expert Opinion on Investigational Drugs, vol. 14, no. 6, pp. 557–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. J. L. Hong, J. Ju, S. Paul et al., “Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ,” Clinical Cancer Research, vol. 15, no. 12, pp. 4242–4249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. A. A. Qureshi, X. Tan, J. C. Reis, et al., “Inhibition of nitric oxide in LPS-stimulated macrophages of young and senescent mice by δ-tocotrienol and quercetin,” Lipids in Health and Disease, vol. 10, p. 239, 2011.
  73. A. A. Qureshi, J. C. Reis, N. Qureshi, C. J. Papasian, D. C. Morrison, and D. M. Schaefer, “δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens,” Lipids in Health and Disease, vol. 10, article 39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Uto-Kondo, R. Ohmori, C. Kiyose et al., “Tocotrienol suppresses adipocyte differentiation and Akt phosphorylation in 3T3-L1 preadipocytes,” Journal of Nutrition, vol. 139, no. 1, pp. 51–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Kuri Harcuch, “Differentiation of 3T3-F442A cells into adipocytes is inhibited by retinoic acid,” Differentiation, vol. 23, no. 2, pp. 164–169, 1982. View at Scopus
  76. E. J. Schwarz, M. J. Reginato, D. Shao, S. L. Krakow, and M. A. Lazar, “Retinoic acid blocks adipogenesis by inhibiting C/EBPβ-mediated transcription,” Molecular and Cellular Biology, vol. 17, no. 3, pp. 1552–1561, 1997. View at Scopus
  77. J. Ribot, F. Felipe, M. L. Bonet, and A. Palou, “Changes of adiposity in response to vitamin A status correlate with changes of PPARγ2 expression,” Obesity Research, vol. 9, no. 8, pp. 500–509, 2001. View at Scopus
  78. K. Hollung, C. P. Rise, C. A. Drevon, and J. E. Reseland, “Tissue-specific regulation of leptin expression and secretion by all-trans retinoic acid,” Journal of Cellular Biochemistry, vol. 92, no. 2, pp. 307–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Felipe, M. L. Bonet, J. Ribot, and A. Palou, “Modulation of resistin expression by retinoic acid and vitamin A status,” Diabetes, vol. 53, no. 4, pp. 882–889, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Felipe, J. Mercader, J. Ribot, A. Palou, and M. L. Bonet, “Effects of retinoic acid administration and dietary vitamin A supplementation on leptin expression in mice: lack of correlation with changes of adipose tissue mass and food intake,” Biochimica et Biophysica Acta, vol. 1740, no. 2, pp. 258–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Mercader, N. Granados, M. L. Bonet, and A. Palou, “All-trans retinoic acid decreases murine adipose retinol binding protein 4 production,” Cellular Physiology and Biochemistry, vol. 22, no. 1–4, pp. 363–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Petkovich, N. J. Brand, A. Krust, and P. Chambon, “A human retinoic acid receptor which belongs to the family of nuclear receptors,” Nature, vol. 330, no. 6147, pp. 444–450, 1987. View at Scopus
  83. A. Aranda and A. Pascual, “Nuclear hormone receptors and gene expression,” Physiological Reviews, vol. 81, no. 3, pp. 1269–1304, 2001. View at Scopus
  84. N. Shaw, M. Elholm, and N. Noy, “Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor β/δ,” The Journal of Biological Chemistry, vol. 278, no. 43, pp. 41589–41592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Hida, T. Kawada, S. Kayahashi, T. Ishihara, and T. Fushiki, “Counteraction of retinoic acid and 1,25-dihydroxyvitamin D3 on up- regulation of adipocyte differentiation with PPARγ ligand, an antidiabetic thiazolidinedione, in 3T3-L1 cells,” Life Sciences, vol. 62, no. 14, pp. 205–211, 1998. View at Scopus
  86. G. Duque, M. Macoritto, and R. Kremer, “1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptor gamma 2 (PPARγ2),” Experimental Gerontology, vol. 39, no. 3, pp. 333–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Yaqoob and P. C. Calder, “N-3 polyunsaturated fatty acids and inflammation in the arterial wall,” European Journal of Medical Research, vol. 8, no. 8, pp. 337–354, 2003. View at Scopus
  88. D. Sun, A. Krishnan, K. Zaman, R. Lawrence, A. Bhattacharya, and G. Fernandes, “Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized Mice,” Journal of Bone and Mineral Research, vol. 18, no. 7, pp. 1206–1216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. T. A. Mori, D. Q. Bao, V. Burke, I. B. Puddey, and L. J. Beilin, “Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans,” Hypertension, vol. 34, no. 2, pp. 253–260, 1999. View at Scopus
  90. V. M. Montori, A. Farmer, P. C. Wollan, and S. F. Dinneen, “Fish oil supplementation in type 2 diabetes: a quantitative systematic review,” Diabetes Care, vol. 23, no. 9, pp. 1407–1415, 2000. View at Scopus
  91. L. H. Storlien, E. W. Kraegen, D. J. Chisholm, et al., “Fish oil prevents insulin resistance induced by high-fat feeding in rats,” Science, vol. 237, no. 4817, pp. 885–888, 1987. View at Scopus
  92. S. Neschen, K. Morino, J. Dong et al., “n-3 fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-α-dependent manner,” Diabetes, vol. 56, no. 4, pp. 1034–1041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. P. C. Calder, “n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases,” American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1505S–1519S, 2006. View at Scopus
  94. W. E. Connor, “Importance of n-3 fatty acids in health and disease,” American Journal of Clinical Nutrition, vol. 71, no. 1, pp. 171S–175S, 2000. View at Scopus
  95. M. K. Duda, K. M. O'Shea, B. Lei et al., “Dietary supplementation with ω-3 PUFA increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload,” Cardiovascular Research, vol. 76, no. 2, pp. 303–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. M. J. Puglisi, A. H. Hasty, and V. Saraswathi, “The role of adipose tissue in mediating the beneficial effects of dietary fish oil,” Journal of Nutritional Biochemistry, vol. 22, no. 2, pp. 101–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Yamamoto, T. Itoh, D. Abe et al., “Identification of putative metabolites of docosahexaenoic acid as potent PPARγ agonists and antidiabetic agents,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 3, pp. 517–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. D. B. Jump, “N-3 polyunsaturated fatty acid regulation of hepatic gene transcription,” Current Opinion in Lipidology, vol. 19, no. 3, pp. 242–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. A. González-Périz, R. Horrillo, N. Ferré et al., “Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins,” FASEB Journal, vol. 23, no. 6, pp. 1946–1957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. O. A. B. S. M. Gani, “Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists?” Cardiovascular Diabetology, vol. 7, article 6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. A. M. Turpeinen, M. Mutanen, A. Aro et al., “Bioconversion of vaccenic acid to conjugated linoleic acid in humans,” American Journal of Clinical Nutrition, vol. 76, no. 3, pp. 504–510, 2002. View at Scopus
  102. J. Bassaganya-Riera, R. Hontecillas, and D. C. Beitz, “Colonic anti-inflammatory mechanisms of conjugated linoleic acid,” Clinical Nutrition, vol. 21, no. 6, pp. 451–459, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Y. Moya-Camarena, J. P. Vanden Heuvel, S. G. Blanchard, L. A. Leesnitzer, and M. A. Belury, “Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα,” Journal of Lipid Research, vol. 40, no. 8, pp. 1426–1433, 1999. View at Scopus
  104. D. S. Kelley, P. C. Taylor, G. J. Nelson et al., “Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men,” Lipids, vol. 34, no. 4, pp. 317–324, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Kew, E. S. Gibbons, F. Thies, G. P. McNeill, P. T. Quinlan, and P. C. Calder, “The effect of feeding structured triacylglycerols enriched in eicosapentaenoic or docosahexaenoic acids on murine splenocyte fatty acids composition and leucocyte phagocytosis,” British Journal of Nutrition, vol. 90, no. 6, pp. 1071–1080, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. C. N. Serhan, C. B. Clish, J. Brannon, S. P. Colgan, N. Chiang, and K. Gronert, “Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing,” Journal of Experimental Medicine, vol. 192, no. 8, pp. 1197–1204, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Bhattacharya, J. Banu, M. Rahman, J. Causey, and G. Fernandes, “Biological effects of conjugated linoleic acids in health and disease,” Journal of Nutritional Biochemistry, vol. 17, no. 12, pp. 789–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. C. P. Alibin, M. A. Kopilas, and H. D. I. Anderson, “Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors α and γ,” The Journal of Biological Chemistry, vol. 283, no. 16, pp. 10707–10715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. W. Wang and P. J. H. Jones, “Conjugated linoleic acid and obesity control: efficacy and mechanisms,” International Journal of Obesity, vol. 28, no. 8, pp. 941–955, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. L. D. Whigham, A. C. Watras, and D. A. Schoeller, “Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans,” American Journal of Clinical Nutrition, vol. 85, no. 5, pp. 1203–1211, 2007. View at Scopus
  111. K. W. J. Wahle, S. D. Heys, and D. Rotondo, “Conjugated linoleic acids: are they beneficial or detrimental to health?” Progress in Lipid Research, vol. 43, no. 6, pp. 553–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. N. Tsuboyama-Kasaoka, M. Takahashi, K. Tanemura et al., “Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice,” Diabetes, vol. 49, no. 9, pp. 1534–1542, 2000. View at Scopus
  113. F. Moloney, T. P. Yeow, A. Mullen, J. J. Nolan, and H. M. Roche, “Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus,” American Journal of Clinical Nutrition, vol. 80, no. 4, pp. 887–895, 2004. View at Scopus
  114. U. Risérus, P. Arner, K. Brismar, and B. Vessby, “Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome,” Diabetes Care, vol. 25, no. 9, pp. 1516–1521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. U. Risérus, B. Vessby, P. Arner, and B. Zethelius, “Supplementation with trans10cis12-conjugated linoleic acid induces hyperproinsulinaemia in obese men: close association with impaired insulin sensitivity,” Diabetologia, vol. 47, no. 6, pp. 1016–1019, 2004. View at Scopus
  116. J. P. DeLany, F. Blohm, A. A. Truett, J. A. Scimeca, and D. B. West, “Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake,” American Journal of Physiology, vol. 276, no. 4, pp. R1172–R1179, 1999. View at Scopus
  117. H. Poirier, I. Niot, L. Clément, M. Guerre-Millo, and P. Besnard, “Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouse,” Biochimie, vol. 87, no. 1, pp. 73–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. G. V. Halade, M. M. Rahman, P. J. Williams, and G. Fernandes, “Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57Bl/6J mice,” Journal of Nutritional Biochemistry, vol. 22, no. 5, pp. 459–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. F. J. Pérez-Cano, C. Ramírez-Santana, M. Molero-Luís et al., “Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy,” Journal of Lipid Research, vol. 50, no. 3, pp. 467–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Hensler, K. Bardova, Z. M. Jilkova et al., “The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice,” Lipids in Health and Disease, vol. 10, p. 128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. Z. C. Dang, V. Audinot, S. E. Papapoulos, J. A. Boutin, and C. W. G. M. Löwik, “PPARγ as a molecular target for the soy phytoestrogen genistein,” The Journal of Biological Chemistry, vol. 278, no. 2, pp. 962–967, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Kim, H. J. Shin, S. Y. Kim et al., “Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARα,” Molecular and Cellular Endocrinology, vol. 220, no. 1-2, pp. 51–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. M. L. Ricketts, D. D. Moore, W. J. Banz, O. Mezei, and N. F. Shay, “Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review,” Journal of Nutritional Biochemistry, vol. 16, no. 6, pp. 321–330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. O. Mezei, Y. Li, E. Mullen, J. S. Ross-Viola, and N. F. Shay, “Dietary isoflavone supplementation modulates lipid metabolism via PPARα-dependent and -independent mechanisms,” Physiological Genomics, vol. 26, no. 1, pp. 8–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. S. L. Yeh, C. L. Yeh, S. T. Chan, and C. H. Chuang, “Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR- expression in human A549 lung cancer cells,” Planta Medica, vol. 77, no. 10, pp. 992–998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Kobori, S. Masumoto, Y. Akimoto, and H. Oike, “Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice,” Molecular Nutrition and Food Research, vol. 55, no. 4, pp. 530–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. D. F. McMichael-Phillips, C. Harding, M. Morton et al., “Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast,” American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1431S–1435S, 1998. View at Scopus
  128. C. R. Sirtori, A. Arnoldi, and S. K. Johnson, “Phytoestrogens: end of a tale?” Annals of Medicine, vol. 37, no. 6, pp. 423–438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Bajaj, A. Hinge, L. S. Limaye, R. K. Gupta, A. Surolia, and V. P. Kale, “Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism,” Glycobiology, vol. 21, no. 4, pp. 521–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Hinge, M. Bajaj, L. Limaye, A. Surolia, and V. Kale, “Oral administration of insulin receptor-interacting lectins leads to an enhancement in the hematopoietic stem and progenitor cell pool of mice,” Stem Cells and Development, vol. 19, no. 2, pp. 163–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Hodge, S. Hodge, and P. Han, “Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease,” Cytometry, vol. 48, no. 4, pp. 209–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Iciek, I. Kwiecieri, and L. Włodek, “Biological properties of garlic and garlic-derived organosulfur compounds,” Environmental and Molecular Mutagenesis, vol. 50, no. 3, pp. 247–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Chai, L. Wo, Y. Fu, T. Xie, Q. Wang, and L. Huang, “S-allyl-L-cysteine sulfoxide inhibits tumor necrosis factor-alpha induced monocyte adhesion and intercellular cell adhesion molecule-1 expression in human umbilical vein endothelial cells,” Anatomical Record, vol. 293, no. 3, pp. 421–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. S. A. Nasim, B. Dhir, R. Kapoor, et al., “Alliin obtained from leaf extract of garlic grown under in situ conditions possess higher therapeutic potency as analyzed in alloxan-induced diabetic rats,” Pharmaceutical Biology, vol. 49, no. 4, pp. 416–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Apitz-Castro, J. J. Badimon, and L. Badimon, “Effect of ajoene, the major antiplatelet compound from garlic, on platelet thrombus formation,” Thrombosis Research, vol. 68, no. 2, pp. 145–155, 1992. View at Publisher · View at Google Scholar · View at Scopus
  136. C. Egen-Schwind, R. Eckard, F. W. Jekat, and H. Winterhoff, “Pharmacokinetics of vinyldithiins, transformation products of allicin,” Planta Medica, vol. 58, no. 1, pp. 8–13, 1992. View at Scopus
  137. M. Keophiphath, F. Priem, I. Jacquemond-Collet, K. Clément, and D. Lacasa, “1,2-Vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes,” Journal of Nutrition, vol. 139, no. 11, pp. 2055–2060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. J. H. Lee, K. A. Kim, K. B. Kwon et al., “Diallyl disulfide accelerates adipogenesis in 3T3-L1 cells,” International Journal of Molecular Medicine, vol. 20, no. 1, pp. 59–64, 2007. View at Scopus
  139. M. S. Quintero-Fabián, D. Ortuño-Sahagún, M. Vázquez-Carrera, and R. I. López-Roa, “Effect of alliin on the adipokines gene expression in an inflammatory in vitro model of 3T3-L1 adipocytes,” in Proceedings of the 1st FALAN Meeting, 2012.
  140. A. L. Chen, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4, pp. 2895–2900, 2001. View at Scopus
  141. M. M. Y. Chan, “Inhibition of tumor necrosis factor by curcumin, a phytochemical,” Biochemical Pharmacology, vol. 49, no. 11, pp. 1551–1556, 1995. View at Publisher · View at Google Scholar · View at Scopus
  142. I. Brouet and H. Ohshima, “Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages,” Biochemical and Biophysical Research Communications, vol. 206, no. 2, pp. 533–540, 1995. View at Publisher · View at Google Scholar · View at Scopus
  143. M. M. Y. Chan, H. I. Huang, M. R. Fenton, and D. Fong, “In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties,” Biochemical Pharmacology, vol. 55, no. 12, pp. 1955–1962, 1998. View at Publisher · View at Google Scholar · View at Scopus
  144. J. S. Welch, M. Ricote, T. E. Akiyama, F. J. Gonzalez, and C. K. Glass, “PPARγ and PPARδ negatively regulate specific subsets of lipopolysaccharide and IFN-γ target genes in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6712–6717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Chen and J. Xu, “Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR,” American Journal of Physiology, vol. 288, no. 3, pp. G447–G456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. A. M. Siddiqui, X. Cui, R. Wu et al., “The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-γ,” Critical Care Medicine, vol. 34, no. 7, pp. 1874–1882, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. N. Adapala and M. M. Chan, “Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral leishmaniasis in a chronic experimental model,” Laboratory Investigation, vol. 88, no. 12, pp. 1329–1339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Zheng and A. Chen, “Disruption of transforming growth factor-β signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-γ in rat hepatic stellate cells,” American Journal of Physiology, vol. 292, no. 1, pp. G113–G123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. A. Camins, F. Junyent, E. Verdaguer, et al., “Resveratrol: an antiaging drug with potential therapeutic applications in treating diseases,” Pharmaceuticals, vol. 2, no. 3, pp. 194–205, 2009.
  150. S. Rayalam, M. A. Della-Fera, J. Y. Yang, J. P. Hea, S. Ambati, and C. A. Baile, “Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes,” Journal of Nutrition, vol. 137, no. 12, pp. 2668–2673, 2007. View at Scopus
  151. Z. E. Floyd, Z. Q. Wang, G. Kilroy, and W. T. Cefalu, “Modulation of peroxisome proliferator-activated receptor γ stability and transcriptional activity in adipocytes by resveratrol,” Metabolism, vol. 57, no. 1, pp. S32–S38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. H. Y. Zhang, Z. X. Du, and X. Meng, “Resveratrol prevents TNFα-induced suppression of adiponectin expression via PPARγ activation in 3T3-L1 adipocytes,” Clinical and Experimental Medicine. In press. View at Publisher · View at Google Scholar
  153. C. D. S. Costa, F. Rohden, T. O. Hammes et al., “Resveratrol upregulated SIRT1, FOXO1, and adiponectin and downregulated PPARγ1-3 mRNA expression in human visceral adipocytes,” Obesity Surgery, vol. 21, no. 3, pp. 356–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. Y. Zhang, Z. Luo, L. Ma, Q. Xu, Q. Yang, and L. Si, “Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for AGE via peroxisome proliferator-activated receptor γ activation,” International Journal of Molecular Medicine, vol. 25, no. 5, pp. 729–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. Z. Xu, X. Chen, Z. Zhong, L. Chen, and Y. Wang, “Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities,” American Journal of Chinese Medicine, vol. 39, no. 1, pp. 15–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. Y. Shimojo, K. Kosaka, and T. Shirasawa, “Effect of Ganoderma lucidum extract on adipocyte differentiation and adiponectin gene expression in the murine pre-adipocyte cell line, 3T3-L1,” Phytotherapy Research, vol. 25, no. 2, pp. 202–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Thyagarajan-Sahu, B. Lane, and D. Sliva, “ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK,” BMC Complementary and Alternative Medicine, vol. 11, p. 74, 2011.
  158. M. H. Roberfroid, Inuline-Type Fructans Functional Foods Ingredients, CRC Series in Modern Nutrition, 2005.
  159. P. D. Cani and N. M. Delzenne, “Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota,” Current Opinion in Pharmacology, vol. 9, no. 6, pp. 737–743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Zenhom, A. Hyder, M. de Vrese, K. J. Heller, T. Roeder, and J. Schrezenmeir, “Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3,” Journal of Nutrition, vol. 141, no. 5, pp. 971–977, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. G. Pattenden, “Natural 4-ylidenebutenolides and 4-ylidenetetronic acids,” Fortschritte der Chemie Organischer Naturstoffe, vol. 35, pp. 133–198, 1978. View at Scopus
  162. R. D. Haworth, “Natural resins,” Annual Report on the Progress of Chemistry, vol. 33, p. 266, 1936.
  163. N. Fakhrudin, A. Ladurner, A. G. Atanasov et al., “Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor γ,” Molecular Pharmacology, vol. 77, no. 4, pp. 559–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. J. Schrezenmeir and M. De Vrese, “Probiotics, prebiotics, and synbiotics—approaching a definition,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 361–364, 2001. View at Scopus
  165. B. Lam and Z. M. Younossi, “Review: treatment options for nonalcoholic fatty liver disease,” Therapeutic Advances in Gastroenterology, vol. 3, no. 2, pp. 121–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. G. Zanello, F. Meurens, M. Berri, and H. Salmon, “Saccharomyces boulardii effects on gastrointestinal diseases,” Current Issues in Molecular Biology, vol. 11, pp. 47–58, 2009. View at Scopus
  167. X. Wu, B. A. Vallance, L. Boyer et al., “Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors,” American Journal of Physiology, vol. 294, no. 1, pp. G295–G306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. I. Castagliuolo, M. F. Riegler, L. Valenick, J. T. LaMont, and C. Pothoulakis, “Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa,” Infection and Immunity, vol. 67, no. 1, pp. 302–307, 1999. View at Scopus
  169. K. L. Mumy, X. Chen, C. P. Kelly, and B. A. McCormick, “Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events,” American Journal of Physiology, vol. 294, no. 3, pp. G599–G609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. F. S. Martins, G. Dalmasso, R. M. E. Arantes et al., “Interaction of Saccharomyces boulardii with Salmonella enterica serovar typhimurium protects mice and modifies T84 cell response to the infection,” PLoS ONE, vol. 5, no. 1, article e8925, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. G. Zanello, M. Berri, J. Dupont et al., “Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells,” PLoS ONE, vol. 6, no. 4, article e18573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. S. K. Lee, H. J. Kim, S. G. Chi et al., “Saccharomyces boulardii activates expression of peroxisome proliferator-activated receptor-gamma in HT-29 cells,” The Korean Journal of Gastroenterology, vol. 45, no. 5, pp. 328–334, 2005. View at Scopus
  173. C. Pothoulakis, “Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii,” Alimentary Pharmacology and Therapeutics, vol. 30, no. 8, pp. 826–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. S. K. Lee, Y. W. Kim, S. G. Chi, Y. S. Joo, and H. J. Kim, “The effect of saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis,” Digestive Diseases and Sciences, vol. 54, no. 2, pp. 255–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Nissle, “Die antagonistische behandlung chronischer darmstorungen mit colibakterien,” Medizinische Klinik, vol. 2, pp. 29–33, 1918.
  176. C. A. Jacobi and P. Malfertheiner, “Escherichia coli Nissle 1917 (Mutaflor): new insights into an old probiotic bacterium,” Digestive Diseases, vol. 29, no. 6, pp. 600–607, 2011.
  177. J. Schulze and U. Sonnenborn, “120 Jahre E. coli: bedeutung in forschung und medizin. Hagen: Alfred-Nissle-Gesellschafte. V,” 2006.
  178. P. C. Konturek, Z. Sliwowski, J. Koziel et al., “Probiotic bacteria Escherichia coli strain Nissle 1917 attenuates acute gastric lesions induced by stress,” Journal of Physiology and Pharmacology, vol. 60, pp. 41–48, 2009. View at Scopus
  179. C. Reiff, M. Delday, G. Rucklidge et al., “Balancing inflammatory, lipid, and xenobiotic signaling pathways by VSL#3, a biotherapeutic agent, in the treatment of inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 15, no. 11, pp. 1721–1736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. J. B. Ewaschuk, J. W. Walker, H. Diaz, and K. L. Madsen, “Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice,” Journal of Nutrition, vol. 136, no. 6, pp. 1483–1487, 2006. View at Scopus
  181. O. Boss and N. Bergenhem, “Adipose targets for obesity drug development,” Expert Opinion on Therapeutic Targets, vol. 10, no. 1, pp. 119–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. F. Bäckhed, H. Ding, T. Wang et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15718–15723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, “Mechanisms underlying the resistance to diet-induced obesity in germ-free mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 979–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. L. Wen, R. E. Ley, P. Y. Volchkov et al., “Innate immunity and intestinal microbiota in the development of Type 1 diabetes,” Nature, vol. 455, no. 7216, pp. 1109–1113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. K. Einarsson, J. A. Gustafsson, and B. E. Gustafsson, “Differences between germ free and conventional rats in liver microsomal metabolism of steroids,” The Journal of Biological Chemistry, vol. 248, no. 10, pp. 3623–3630, 1973. View at Scopus
  186. K. Einarsson, J. A. Gustafsson, and B. E. Gustafsson, “Hepatic 3 hydroxy 3 methylglutaryl CoA reductase activity in germfree rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 154, no. 3, pp. 319–321, 1977. View at Scopus
  187. B. E. Gustafsson, B. Angelin, K. Einarsson, and J. A. Gustafsson, “Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats,” Journal of Lipid Research, vol. 18, no. 6, pp. 717–721, 1977. View at Scopus
  188. P. Desreumaux, L. Dubuquoy, S. Nutten et al., “Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor γ (PPARγ) heterodimer: a basis for new therapeutic strategies,” Journal of Experimental Medicine, vol. 193, no. 7, pp. 827–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Chawla, Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R. M. Evans, “PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation,” Nature Medicine, vol. 7, no. 1, pp. 48–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  190. P. Vavassori, A. Mencarelli, B. Renga, E. Distrutti, and S. Fiorucci, “The bile acid receptor FXR is a modulator of intestinal innate immunity,” Journal of Immunology, vol. 183, no. 10, pp. 6251–6261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. G. Rumi, R. Tsubouchi, M. Okayama, S. Kato, G. Mózsik, and K. Takeuchi, “Protective effect of lactulose on dextran sulfate sodium-induced colonic inflammation in rats,” Digestive Diseases and Sciences, vol. 49, no. 9, pp. 1466–1472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  192. F. Lara-Villoslada, E. Debras, A. Nieto et al., “Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis,” Clinical Nutrition, vol. 25, no. 3, pp. 477–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. J. O. Lindsay, K. Whelan, A. J. Stagg et al., “Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn's disease,” Gut, vol. 55, no. 3, pp. 348–355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  194. J. Winkler, R. Butler, and E. Symonds, “Fructo-oligosaccharide reduces inflammation in a dextran sodium sulphate mouse model of colitis,” Digestive Diseases and Sciences, vol. 52, no. 1, pp. 52–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. P. L. Lakatos, “Recent trends in the epidemiology of inflammatory bowel diseases: up or down?” World Journal of Gastroenterology, vol. 12, no. 38, pp. 6102–6108, 2006. View at Scopus
  196. S. B. Joseph, A. Castrillo, B. A. Laffitte, D. J. Mangelsdorf, and P. Tontonoz, “Reciprocal regulation of inflammation and lipid metabolism by liver X receptors,” Nature Medicine, vol. 9, no. 2, pp. 213–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  197. S. Fiorucci, S. Cipriani, A. Mencarelli, B. Renga, E. Distrutti, and F. Baldelli, “Counter-regulatory role of bile acid activated receptors in immunity and inflammation,” Current Molecular Medicine, vol. 10, no. 6, pp. 579–595, 2010. View at Scopus
  198. T. Mach, “Clinical usefulness of probiotics in inflammatory bowel diseases,” Journal of Physiology and Pharmacology, vol. 57, no. 9, pp. 23–33, 2006. View at Scopus
  199. L. Dubuquoy, C. Rousseaux, X. Thuru et al., “PPARγ as a new therapeutic target in inflammatory bowel diseases,” Gut, vol. 55, no. 9, pp. 1341–1349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. J. Bassaganya-Riera and R. Hontecillas, “Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 5, pp. 569–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  201. N. Nieto, M. I. Torres, A. Ŕos, and A. Gil, “Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis,” Journal of Nutrition, vol. 132, no. 1, pp. 11–19, 2002. View at Scopus
  202. D. Q. Shih and S. R. Targan, “Immunopathogenesis of inflammatory bowel disease,” World Journal of Gastroenterology, vol. 14, no. 3, pp. 390–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  203. P. Desreumaux, O. Ernst, K. Geboes et al., “Inflammatory alterations in mesenteric adipose tissue in Crohn's disease,” Gastroenterology, vol. 117, no. 1, pp. 73–81, 1999. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Schäffler, J. Schölmerich, and C. Büchler, “Mechanisms of disease: adipocytokines and visceral adipose tissue—emerging role in nonalcoholic fatty liver disease,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 2, no. 6, pp. 273–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  205. I. Karagiannides, E. Kokkotou, M. Tansky et al., “Induction of colitis causes inflammatory responses in fat depots: evidence for substance P pathways in human mesenteric preadipocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 5207–5212, 2006. View at Publisher · View at Google Scholar · View at Scopus
  206. N. Frey, H. A. Katus, E. N. Olson, and J. A. Hill, “Hypertrophy of the heart: a new therapeutic target?” Circulation, vol. 109, no. 13, pp. 1580–1589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  207. R. De Caterina, A. Zampolli, S. Del Turco, R. Madonna, and M. Massaro, “Nutritional mechanisms that influence cardiovascular disease,” American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 421S–426S, 2006. View at Scopus
  208. C. Wang, W. S. Harris, M. Chung et al., “n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 5–17, 2006. View at Scopus