About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2012 (2012), Article ID 348245, 12 pages
http://dx.doi.org/10.1155/2012/348245
Review Article

Transcriptional Regulation by Nuclear Corepressors and PGC-1α: Implications for Mitochondrial Quality Control and Insulin Sensitivity

1Key Laboratory of Adolescent Health Assessment and Exercise Intervention, East China Normal University, Shanghai 200241, China
2College of Physical Education and Health, East China Normal University, Shanghai 200241, China

Received 10 September 2012; Revised 6 November 2012; Accepted 13 November 2012

Academic Editor: Tetsuo Yamaguchi

Copyright © 2012 Zhengtang Qi and Shuzhe Ding. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Geng, P. Li, M. Okutsu et al., “PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle,” American Journal of Physiology, vol. 298, no. 3, pp. C572–C579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. H. Cha, J. T. Rodgers, P. Puigserver, S. Chohnan, and M. D. Lane, “Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: role of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15410–15415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Little, A. Safdar, G. P. Wilkin, M. A. Tarnopolsky, and M. J. Gibala, “A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms,” Journal of Physiology, vol. 588, no. 6, pp. 1011–1022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Scarpulla, “Transcriptional paradigms in mammalian mitochondrial biogenesis and function,” Physiological Reviews, vol. 88, no. 2, pp. 611–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Ljubicic, A. M. Joseph, A. Saleem et al., “Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging,” Biochimica et Biophysica Acta, vol. 1800, no. 3, pp. 223–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yamamoto, E. G. Williams, L. Mouchiroud, C. Canto, W. Fan, et al., “NCoR1 is a conserved physiological modulator of muscle mass and oxidative function,” Cell, vol. 147, pp. 827–839, 2011.
  7. S. Fang, J. M. Suh, A. R. Atkins et al., “Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 8, pp. 3412–3417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Brands, A. J. Verhoeven, and M. J. Serlie, “Role of mitochondrial function in insulin resistance,” Advances in Experimental Medicine and Biology, vol. 942, pp. 215–234, 2012.
  9. K. Jing and K. Lim, “Why is autophagy important in human diseases?” Experimental and Molecular Medicine, vol. 44, pp. 69–72, 2012.
  10. L. Yang, P. Li, S. Fu, E. S. Calay, and G. S. Hotamisligil, “Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance,” Cell Metabolism, vol. 11, no. 6, pp. 467–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Masiero, L. Agatea, C. Mammucari et al., “Autophagy is required to maintain muscle mass,” Cell Metabolism, vol. 10, no. 6, pp. 507–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Y. Liu, J. Han, S. Y. Cao et al., “Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. Inhibition of FoxO1-dependent expression of key autophagy genes by insulin,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 31484–31492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yan, Z. Feng, J. Liu et al., “Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate,” Journal of Nutritional Biochemistry, vol. 23, no. 7, pp. 716–724, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Wu, C. Quijano, E. Chen et al., “Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy,” Aging, vol. 1, no. 4, pp. 425–437, 2009. View at Scopus
  15. R. Scherz-Shouval and Z. Elazar, “Regulation of autophagy by ROS: physiology and pathology,” Trends in Biochemical Sciences, vol. 36, no. 1, pp. 30–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Maiuri, L. Galluzzi, E. Morselli, O. Kepp, S. A. Malik, and G. Kroemer, “Autophagy regulation by p53,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 181–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Tasdemir, M. M. Chiara, E. Morselli et al., “A dual role of p53 in the control of autophagy,” Autophagy, vol. 4, no. 6, pp. 810–814, 2008. View at Scopus
  18. D. F. Egan, J. Kim, R. J. Shaw, and K. L. Guan, “The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR,” Autophagy, vol. 7, no. 6, pp. 645–646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. J. Youle and D. P. Narendra, “Mechanisms of mitophagy,” Nature Reviews Molecular Cell Biology, vol. 12, no. 1, pp. 9–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. X. Ding, H. M. Ni, M. Li et al., “Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming,” Journal of Biological Chemistry, vol. 285, no. 36, pp. 27879–27890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Springer and P. J. Kahle, “Regulation of PINK1-Parkin-mediated mitophagy,” Autophagy, vol. 7, no. 3, pp. 266–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Itakura, C. Kishi-Itakura, I. Koyama-Honda, and N. Mizushima, “Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy,” Journal of Cell Science, vol. 125, pp. 1488–1499, 2012.
  23. D. F. Egan, D. B. Shackelford, M. M. Mihaylova et al., “Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy,” Science, vol. 331, no. 6016, pp. 456–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Mitsuhashi, H. Hatakeyama, M. Karahashi, et al., “Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy,” Human Molecular Genetics, vol. 20, pp. 3841–3851, 2011.
  25. A. Hoshino, S. Matoba, E. Iwai-Kanai, et al., “p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia,” Journal of Molecular and Cellular Cardiology, vol. 52, pp. 175–184, 2012.
  26. S. Michel, A. Wanet, A. De Pauw, G. Rommelaere, T. Arnould, and P. Renard, “Crosstalk between mitochondrial (dys)function and mitochondrial abundance,” Journal of Cellular Physiology, vol. 227, pp. 2297–2310, 2012.
  27. M. D. Cordero, M. De Miguel, A. M. Moreno Fernández et al., “Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease,” Arthritis Research and Therapy, vol. 12, no. 1, article R17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. M. Mihaylova and R. J. Shaw, “The AMPK signalling pathway coordinates cell growth, autophagy and metabolism,” Nature Cell Biology, vol. 13, pp. 1016–1023, 2011.
  29. C. Chen, Y. Liu, R. Liu et al., “TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species,” Journal of Experimental Medicine, vol. 205, no. 10, pp. 2397–2408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. N. Carter and D. A. Hood, “Contractile activity-induced mitochondrial biogenesis and mTORC1,” American Journal of Physiology, vol. 303, no. 5, pp. C540–C547, 2012.
  31. J. T. Cunningham, J. T. Rodgers, D. H. Arlow, F. Vazquez, V. K. Mootha, and P. Puigserver, “mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex,” Nature, vol. 450, no. 7170, pp. 736–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Saleem, H. Carter, S. Iqbal, and D. A. Hood, “Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis,” Exercise and Sport Sciences Reviews, vol. 39, pp. 199–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Y. Park, P. Y. Wang, T. Matsumoto et al., “P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content,” Circulation Research, vol. 105, no. 7, pp. 705–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Lebedeva, J. S. Eaton, and G. S. Shadel, “Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis,” Biochimica et Biophysica Acta, vol. 1787, no. 5, pp. 328–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Kulawiec, V. Ayyasamy, and K. K. Singh, “p53 regulates mtDNA copy number and mitocheckpoint pathway,” Journal of Carcinogenesis, vol. 8, article 8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. K. Dagda, J. Zhu, S. M. Kulich, and C. T. Chu, “Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease,” Autophagy, vol. 4, no. 6, pp. 770–782, 2008. View at Scopus
  37. J. H. Zhu, A. M. Gusdon, H. Cimen, B. Van Houten, E. Koc, and C. T. Chu, “Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2,” Cell Death & Disease, vol. 3, no. 5, article e312, 2012.
  38. P. Echave, G. Machado-da-Silva, R. S. Arkell et al., “Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis,” Journal of Cell Science, vol. 122, no. 24, pp. 4516–4525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Ashabi, M. Ramin, P. Azizi, et al., “ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1alpha levels in Abeta-injected rats,” Behavioural Brain Research, vol. 232, pp. 165–173, 2012.
  40. W. Zhang, B. J. Thompson, V. Hietakangas, and S. M. Cohen, “MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila,” PLoS Genetics, vol. 7, no. 12, Article ID e1002429, 2011.
  41. U. Nair and D. J. Klionsky, “Activation of autophagy is required for muscle homeostasis during physical exercise,” Autophagy, vol. 7, pp. 1405–1406, 2011.
  42. K. Garber, “Autophagy. Explaining exercise,” Science, vol. 335, p. 281, 2012. View at Publisher · View at Google Scholar
  43. P. Grumati, L. Coletto, A. Schiavinato, et al., “Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles,” Autophagy, vol. 7, pp. 1415–1423, 2011.
  44. C. He, M. C. Bassik, V. Moresi, et al., “Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis,” Nature, vol. 481, pp. 511–515, 2012.
  45. Y. Ogura, M. Iemitsu, H. Naito, et al., “Single bout of running exercise changes LC3-II expression in rat cardiac muscle,” Biochemical and Biophysical Research Communications, vol. 414, pp. 756–760, 2011.
  46. C. Jamart, M. Francaux, G. Y. Millet, L. Deldicque, D. Frère, and L. Féasson, “Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running,” Journal of Applied Physiology, vol. 112, pp. 1529–1537, 2012.
  47. M. G. MacKenzie, D. L. Hamilton, J. T. Murray, and K. Baar, “mVps34 is activated by an acute bout of resistance exercise,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1314–1316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Lee, J. H. Kim, Y. Hong, S. R. Lee, K. T. Chang, and Y. Hong, “Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats,” Laboratory Animal Research, vol. 28, pp. 171–1179, 2012.
  49. A. J. Smuder, A. N. Kavazis, K. Min, and S. K. Powers, “Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle,” Journal of Applied Physiology, vol. 111, pp. 1190–1198, 2011.
  50. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, article e76, no. 3, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. G. López-Lluch, N. Hunt, B. Jones et al., “Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 6, pp. 1768–1773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. L. W. Finley, J. Lee, A. Souza, et al., “Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction,” The Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 2931–2936, 2012.
  53. C. R. Hancock, D. H. Han, K. Higashida, S. H. Kim, and J. O. Holloszy, “Does calorie restriction induce mitochondrial biogenesis? A reevaluation,” The FASEB Journal, vol. 25, no. 2, pp. 785–791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Alirezaei, C. C. Kemball, C. T. Flynn, M. R. Wood, J. L. Whitton, and W. B. Kiosses, “Short-term fasting induces profound neuronal autophagy,” Autophagy, vol. 6, no. 6, pp. 702–710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. E. Wohlgemuth, A. Y. Seo, E. Marzetti, H. A. Lees, and C. Leeuwenburgh, “Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise,” Experimental Gerontology, vol. 45, no. 2, pp. 138–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Kume, T. Uzu, K. Horiike et al., “Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1043–1055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. C. Price, C. F. Khambatta, K. W. Li, et al., “The effect of long term calorie restriction on in vivo hepatic proteostatis: a novel combination of dynamic and quantitative proteomics,” Molecular & Cellular Proteomics. In press.
  58. L. Li, C. Muhlfeld, B. Niemann, R. Pan, R. Li, et al., “Mitochondrial biogenesis and PGC-1alpha deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle,” Basic Research in Cardiology, vol. 106, pp. 1221–1234, 2011.
  59. S. Jäer, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Li, R. Pan, R. Li et al., “Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required,” Diabetes, vol. 60, no. 1, pp. 157–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Safdar, J. P. Little, A. J. Stokl, B. P. Hettinga, M. Akhtar, and M. A. Tarnopolsky, “Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis,” Journal of Biological Chemistry, vol. 286, no. 12, pp. 10605–10617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Irrcher, V. Ljubicic, and D. A. Hood, “Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells,” American Journal of Physiology, vol. 296, no. 1, pp. C116–C123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. X. Kong, R. Wang, Y. Xue et al., “Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis,” PLoS ONE, vol. 5, no. 7, Article ID e11707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. D. Chen, D. I. Yang, T. K. Lin, F. Z. Shaw, C. W. Liou, and Y. C. Chuang, “Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia,” International Journal of Molecular Sciences, vol. 12, pp. 7199–7215, 2011.
  65. J. St-Pierre, S. Drori, M. Uldry et al., “Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators,” Cell, vol. 127, no. 2, pp. 397–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Takikita, C. Schreiner, R. Baum et al., “Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and pompe skeletal muscle,” PLoS ONE, vol. 5, no. 12, Article ID e15239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Wenz, S. G. Rossi, R. L. Rotundo, B. M. Spiegelman, and C. T. Moraes, “Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20405–20410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. J. Brault, J. G. Jespersen, and A. L. Goldberg, “Peroxisome proliferator-activated receptor γ coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy,” Journal of Biological Chemistry, vol. 285, no. 25, pp. 19460–19471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. L. Gamboa and F. H. Andrade, “Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia,” American Journal of Physiology, vol. 298, no. 3, pp. R575–R583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Feng, L. Bai, J. Yan et al., “Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol,” Free Radical Biology and Medicine, vol. 50, no. 10, pp. 1437–1446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. S. A. Santi and H. Lee, “Ablation of Akt2 induces autophagy through cell cycle arrest, the downregulation of p70s6k, and the deregulation of mitochondria in MDA-MB231 cells,” PLoS ONE, vol. 6, no. 1, Article ID e14614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. A. F. Salem, D. Whitaker-Menezes, A. Howell, F. Sotgia, and M. P. Lisanti, “Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance,” Cell Cycle, vol. 11, no. 22, pp. 4174–4180, 2012.
  73. C. Pacelli, D. De Rasmo, A. Signorile et al., “Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1812, no. 8, pp. 1041–1053, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. H. Shin, H. S. Ko, H. Kang et al., “PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in parkinson's disease,” Cell, vol. 144, no. 5, pp. 689–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Pascual, A. L. Fong, S. Ogawa et al., “A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ,” Nature, vol. 437, no. 7059, pp. 759–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. D. G. McEwan and I. Dikic, “The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation,” Trends in Cell Biology, vol. 21, no. 4, pp. 195–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. W. Huang, S. Ghisletti, K. Saijo et al., “Coronin 2A mediates actin-dependent de-repression of inflammatory response genes,” Nature, vol. 470, no. 7334, pp. 414–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Ghisletti, W. Huang, S. Ogawa et al., “Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ,” Molecular Cell, vol. 25, no. 1, pp. 57–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Jennewein, A. M. Kuhn, M. V. Schmidt et al., “Sumoylation of peroxisome proliferator-activated receptor γ by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from κB binding sites mediating transrepression of proinflammatory cytokines,” Journal of Immunology, vol. 181, no. 8, pp. 5646–5652, 2008. View at Scopus
  80. B. Pourcet, I. Pineda-Torra, B. Derudas, B. Staels, and C. Glineur, “SUMOylation of human peroxisome proliferator-activated receptor α inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 5983–5992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Li, W. Fan, J. Xu, et al., “Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity,” Cell, vol. 147, pp. 815–826, 2011.
  82. D. Nichol, M. Christian, J. H. Steel, R. White, and M. G. Parker, “RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis,” Journal of Biological Chemistry, vol. 281, no. 43, pp. 32140–32147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Fritah, “Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140,” Applied Physiology, Nutrition and Metabolism, vol. 34, no. 3, pp. 362–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Rosell, M. C. Jones, and M. G. Parker, “Role of nuclear receptor corepressor RIP140 in metabolic syndrome,” Biochimica et Biophysica Acta, vol. 1812, no. 8, pp. 919–928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Leonardsson, J. H. Steel, M. Christian et al., “Nuclear receptor corepressor RIP140 regulates fat accumulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8437–8442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Christian, E. Kiskinis, D. Debevec, G. Leonardsson, R. White, and M. G. Parker, “RIP140-targeted repression of gene expression in adipocytes,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9383–9391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. A. M. Powelka, A. Seth, J. V. Virbasius et al., “Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes,” Journal of Clinical Investigation, vol. 116, no. 1, pp. 125–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Seth, J. H. Steel, D. Nichol et al., “The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle,” Cell Metabolism, vol. 6, no. 3, pp. 236–245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Fritah, J. H. Steel, N. Parker, et al., “Absence of RIP140 reveals a pathway regulating glut4-dependent glucose uptake in oxidative skeletal muscle through UCP1-mediated activation of AMPK,” PLoS One, vol. 7, Article ID e32520, 2012.
  90. P. C. Ho, Y. W. Lin, Y. C. Tsui, P. Gupta, and L. N. Wei, “A negative regulatory pathway of GLUT4 trafficking in adipocyte: new Ffnction of RIP140 in the cytoplasm via AS160,” Cell Metabolism, vol. 10, no. 6, pp. 516–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. P. C. Ho and L. N. Wei, “Negative regulation of adiponectin secretion by receptor interacting protein 140 (RIP140),” Cell Signal, vol. 24, pp. 71–76, 2012.
  92. P. C. Ho, Y. C. Tsui, Y. W. Lin, S. D. Persaud, and L. N. Wei, “Endothelin-1 promotes cytoplasmic accumulation of RIP140 through a ET(A)-PLCbeta-PKCepsilon pathway,” Molecular and Cellular Endocrinology, vol. 351, pp. 176–183, 2012.
  93. P. Gupta, P. C. Ho, M. D. Huq, A. A. Khan, N. P. Tsai, and L. N. Wei, “PKCε stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation,” PLoS ONE, vol. 3, no. 7, Article ID e2658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. P. C. Ho, Y. S. Chuang, C. H. Hung, and L. N. Wei, “Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis,” Cellular Signalling, vol. 23, no. 8, pp. 1396–1403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Fritah, M. Christian, and M. G. Parker, “The metabolic coregulator RIP140: an update,” American Journal of Physiology, vol. 299, no. 3, pp. E335–E340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. M. Sutanto, M. S. Symons, and R. N. Cohen, “SMRT recruitment by PPARγ is mediated by specific residues located in its carboxy-terminal interacting domain,” Molecular and Cellular Endocrinology, vol. 267, no. 1-2, pp. 138–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Yu, K. Markan, K. A. Temple, D. Deplewski, M. J. Brady, and R. N. Cohen, “The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor γ transcriptional activity and repress 3T3-L1 adipogenesis,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13600–13605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Varlakhanova, C. Snyder, S. Jose, J. B. Hahm, and M. L. Privalsky, “Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the corepressor N terminus and the receptor DNA binding domain,” Molecular and Cellular Biology, vol. 30, no. 6, pp. 1434–1445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Oberoi, L. Fairall, P. J. Watson et al., “Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery,” Nature Structural and Molecular Biology, vol. 18, no. 2, pp. 177–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Bhaskara, S. K. Knutson, G. Jiang et al., “Hdac3 is essential for the maintenance of chromatin structure and genome stability,” Cancer Cell, vol. 18, no. 5, pp. 436–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Grégoire, L. Xiao, J. Nie et al., “Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2,” Molecular and Cellular Biology, vol. 27, no. 4, pp. 1280–1295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. S. M. Reilly, P. Bhargava, S. Liu et al., “Nuclear receptor corepressor SMRT regulates mitochondrial oxidative metabolism and mediates aging-related metabolic deterioration,” Cell Metabolism, vol. 12, no. 6, pp. 643–653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. R. R. Nofsinger, P. Li, S. H. Hong et al., “SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 20021–20026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. M. M. Sutanto, K. K. Ferguson, H. Sakuma, H. Ye, M. J. Brady, and R. N. Cohen, “The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo,” Journal of Biological Chemistry, vol. 285, no. 24, pp. 18485–18495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. V. Puri, S. Ranjit, S. Konda et al., “Cidea is associated with lipid droplets and insulin sensitivity in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 22, pp. 7833–7838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Hallberg, D. L. Morganstein, E. Kiskinis et al., “A functional interaction between RIP140 and PGC-1α regulates the expression of the lipid droplet protein CIDEA,” Molecular and Cellular Biology, vol. 28, no. 22, pp. 6785–6795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Hoshino, Y. Yoshida, G. P. Holloway, J. Lally, H. Hatta, and A. Bonen, “Clenbuterol, a beta2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle,” American Journal of Physiology, vol. 302, pp. R373–R384, 2012.
  108. M. M. Rytinki and J. J. Palvimo, “SUMOylation attenuates the function of PGC-1α,” Journal of Biological Chemistry, vol. 284, no. 38, pp. 26184–26193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Chen, Y. Wang, J. Chen, X. Chen, W. Cao, et al., “Roles of transcriptional corepressor RIP140 and coactivator PGC-1alpha in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes,” Molecular and Cellular Endocrinology, vol. 362, no. 1-2, pp. 11–18, 2012.
  110. B. C. Frier, C. R. Hancock, J. P. Little, et al., “Reductions in RIP140 are not required for exercise- and AICAR-mediated increases in skeletal muscle mitochondrial content,” Journal of Applied Physiology, vol. 111, pp. 688–695, 2011.
  111. N. Wu, L. Yin, E. A. Hanniman, S. Joshi, and M. A. Lazar, “Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα,” Genes and Development, vol. 23, no. 18, pp. 2201–2209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. F. X. Soriano, F. Léveillé, S. Papadia, K. F. S. Bell, C. Puddifoot, and G. E. Hardingham, “Neuronal activity controls the antagonistic balance between peroxisome proliferator-activated receptor-γ coactivator-1α and silencing mediator of retinoic acid and thyroid hormone receptors in regulating antioxidant defenses,” Antioxidants and Redox Signaling, vol. 14, no. 8, pp. 1425–1436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Fujimura, H. Sakuma, S. Konishi et al., “FK614, a novel peroxisome proliferator-activated receptor γ modulator, induces differential transactivation through a unique ligand-specific interaction with transcriptional coactivators,” Journal of Pharmacological Sciences, vol. 99, no. 4, pp. 342–352, 2005. View at Publisher · View at Google Scholar · View at Scopus