About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2012 (2012), Article ID 527607, 8 pages
http://dx.doi.org/10.1155/2012/527607
Review Article

Prostaglandins as PPAR Modulators in Adipogenesis

Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan

Received 29 September 2012; Accepted 20 November 2012

Academic Editor: Shihori Tanabe

Copyright © 2012 Ko Fujimori. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Friedman, “Modern science versus the stigma of obesity,” Nature Medicine, vol. 10, no. 6, pp. 563–569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Attie and P. E. Scherer, “Adipocyte metabolism and obesity,” Journal of Lipid Research, vol. 50, pp. S395–S399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Cornier, D. Dabelea, T. L. Hernandez et al., “The metabolic syndrome,” Endocrine Reviews, vol. 29, no. 7, pp. 777–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Pi-Sunyer, “The medical risks of obesity,” Postgraduate Medicine, vol. 121, no. 6, pp. 21–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Galic, J. S. Oakhill, and G. R. Steinberg, “Adipose tissue as an endocrine organ,” Molecular and Cellular Endocrinology, vol. 316, no. 2, pp. 129–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Rasouli and P. A. Kern, “Adipocytokines and the metabolic complications of obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. s64–s73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Antuna-Puente, B. Feve, S. Fellahi, and J. P. Bastard, “Adipokines: the missing link between insulin resistance and obesity,” Diabetes and Metabolism, vol. 34, no. 1, pp. 2–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Matsuzawa, “Adiponectin: a key player in obesity related disorders,” Current Pharmaceutical Design, vol. 16, no. 17, pp. 1896–1901, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. I. Lefterova and M. A. Lazar, “New developments in adipogenesis,” Trends in Endocrinology and Metabolism, vol. 20, no. 3, pp. 107–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Rosen, J. Eguchi, and Z. Xu, “Transcriptional targets in adipocyte biology,” Expert Opinion on Therapeutic Targets, vol. 13, no. 8, pp. 975–986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. I. Anghel and W. Wahli, “Fat poetry: a kingdom for PPARγ,” Cell Research, vol. 17, no. 6, pp. 486–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Christodoulides and A. Vidal-Puig, “PPARs and adipocyte function,” Molecular and Cellular Endocrinology, vol. 318, no. 1-2, pp. 61–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. U. A. White and J. M. Stephens, “Transcriptional factors that promote formation of white adipose tissue,” Molecular and Cellular Endocrinology, vol. 318, no. 1-2, pp. 10–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Siersbæk, R. Nielsen, and S. Mandrup, “PPARγ in adipocyte differentiation and metabolism—novel insights from genome-wide studies,” FEBS Letters, vol. 584, no. 15, pp. 3242–3249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Tontonoz and B. M. Spiegelman, “Fat and beyond: the diverse biology of PPARγ,” Annual Review of Biochemistry, vol. 77, pp. 289–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Sharma and B. Staels, “Review: peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 386–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Tabe, M. Konopleva, M. Andreeff, and A. Ohsaka, “Effects of PPARγ ligands on leukemia,” PPAR Research, vol. 2012, Article ID 483656, 8 pages, 2012. View at Publisher · View at Google Scholar
  18. B. Cariou, B. Charbonnel, and B. Staels, “Thiazolidinediones and PPARγ agonists: time for a reassessment,” Trends in Endocrinology and Metabolism, vol. 23, no. 5, pp. 205–215, 2012.
  19. M. Penumetcha and N. Santanam, “Nutraceuticals as ligands of PPARγ,” PPAR Research, vol. 2012, Article ID 858352, 7 pages, 2012. View at Publisher · View at Google Scholar
  20. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Scopus
  21. S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. C. Morris, and J. M. Lehmann, “A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813–819, 1995. View at Scopus
  22. S. A. Kliewer, S. S. Sundseth, S. A. Jones et al., “Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4318–4323, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Krey, O. Braissant, F. L'Horset et al., “Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay,” Molecular Endocrinology, vol. 11, no. 6, pp. 779–791, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kobayashi and K. Fujimori, “Very long chain-fatty acids enhance adipogenesis through co-regulation of Elovl3 and PPARγ in 3T3-L1 cells,” American Journal of Physiology, Endocrinology and Metabolism, vol. 302, no. 12, pp. E1461–E1471, 2012.
  25. L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans, “Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ,” Cell, vol. 93, no. 2, pp. 229–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Tontonoz, L. Nagy, J. G. A. Alvarez, V. A. Thomazy, and R. M. Evans, “PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL,” Cell, vol. 93, no. 2, pp. 241–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Peraza, A. D. Burdick, H. E. Marin, F. J. Gonzalez, and J. M. Peters, “The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR),” Toxicological Sciences, vol. 90, no. 2, pp. 269–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Murakami, Y. Taketomi, Y. Miki, H. Sato, T. Hirabayashi, and K. Yamamoto, “Recent progress in phospholipase A2 research: from cells to animals to humans,” Progress in Lipid Research, vol. 50, no. 2, pp. 152–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. L. Smith, Y. Urade, and P. J. Jakobsson, “Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis,” Chemical Reviews, vol. 111, no. 10, pp. 5821–5865, 2011.
  30. S. Narumiya and T. Furuyashiki, “Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years,” FASEB Journal, vol. 25, no. 3, pp. 813–818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Fujimori, T. Ueno, N. Nagata et al., “Suppression of adipocyte differentiation by aldo-keto reductase 1B3 acting as prostaglandin F2α synthase,” Journal of Biological Chemistry, vol. 285, no. 12, pp. 8880–8886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Yan, A. Kermouni, M. Abdel-Hafez, and D. C. W. Lau, “Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells,” Journal of Lipid Research, vol. 44, no. 2, pp. 424–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Chu, K. Nishimura, M. Jisaka, T. Nagaya, F. Shono, and K. Yokota, “Up-regulation of adipogenesis in adipocytes expressing stably cyclooxygenase-2 in the antisense direction,” Prostaglandins and Other Lipid Mediators, vol. 91, no. 1-2, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Fajas, S. Miard, M. R. Briggs, and J. Auwerx, “Selective cyclo-oxygenase-2 inhibitors impair adipocyte differentiation through inhibition of the clonal expansion phase,” Journal of Lipid Research, vol. 44, no. 9, pp. 1652–1659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Vegiopoulos, K. Müller-Decker, D. Strzoda et al., “Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes,” Science, vol. 328, no. 5982, pp. 1158–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ghoshal, D. B. Trivedi, G. A. Graf, and C. D. Loftin, “Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 889–898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Casimir, C. W. Miller, and J. M. Ntambi, “Preadipocyte differentiation blocked by prostaglandin stimulation of prostanoid FP2 receptor in murine 3T3-L1 cells,” Differentiation, vol. 60, no. 4, pp. 203–210, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Liu and N. A. Clipstone, “Prostaglandin F2α inhibits adipocyte differentiation via a Gαq-calcium-calcineurin-dependent signaling pathway,” Journal of Cellular Biochemistry, vol. 100, no. 1, pp. 161–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. W. Miller, D. A. Casimir, and J. M. Ntambi, “The mechanism of inhibition of 3T3-L1 preadipocyte differentiation by prostaglandin F2α,” Endocrinology, vol. 137, no. 12, pp. 5641–5650, 1996. View at Scopus
  40. G. Serrero and N. M. Lepak, “Prostaglandin F2α receptor (FP receptor) agonists are potent adipose differentiation inhibitors for primary culture of adipocyte precursors in defined medium,” Biochemical and Biophysical Research Communications, vol. 233, no. 1, pp. 200–202, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. M. J. Reginato, S. L. Krakow, S. T. Bailey, and M. A. Lazar, “Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor γ,” Journal of Biological Chemistry, vol. 273, no. 4, pp. 1855–1858, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Tsuboi, Y. Sugimoto, T. Kainoh, and A. Ichikawa, “Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation,” Biochemical and Biophysical Research Communications, vol. 322, no. 3, pp. 1066–1072, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Inazumi, N. Shirata, K. Morimoto, H. Takano, E. Segi-Nishida, and Y. Sugimoto, “Prostaglandin E2-EP4 signaling suppresses adipocyte differentiation in mouse embryonic fibroblasts via an autocrine mechanism,” Journal of Lipid Research, vol. 52, no. 8, pp. 1500–1508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Watanabe, “Recent reports about enzymes related to the synthesis of prostaglandin (PG) F2 (PGF2α and 9α, 11β-PGF2,” Journal of Biochemistry, vol. 150, no. 6, pp. 593–596, 2011.
  45. Z. Kabututu, M. Manin, J. C. Pointud et al., “Prostaglandin F2α synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7,” Journal of Biochemistry, vol. 145, no. 2, pp. 161–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Tirard, J. Gout, A. M. Lefrançois-Martinez, A. Martinez, M. Begeot, and D. Naville, “A novel inhibitory protein in adipose tissue, the aldo-keto reductase AKR1B7: its role in adipogenesis,” Endocrinology, vol. 148, no. 5, pp. 1996–2005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Moriuchi, N. Koda, E. Okuda-Ashitaka et al., “Molecular characterization of a novel type of prostamide/prostaglandin F synthase, belonging to the thioredoxin-like superfamily,” Journal of Biological Chemistry, vol. 283, no. 2, pp. 792–801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. C. Byrns, Y. Jin, and T. M. Penning, “Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights,” Journal of Steroid Biochemistry and Molecular Biology, vol. 125, no. 1-2, pp. 95–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. F. E. Volat, J. C. Pointud, E. Pastel et al., “Depressed levels of prostaglandin F2α in mice lacking akr1b7 increase basal adiposity and predispose to diet-Induced obesity,” Diabetes, vol. 61, no. 11, pp. 2796–2806, 2012.
  50. T. Ueno and K. Fujimori, “Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F2α receptor mediated activation of MEK/ERK-CREB cascade,” FEBS Journal, vol. 278, no. 16, pp. 2901–2912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Sugimoto, H. Tsuboi, Y. Okuno et al., “Microarray evaluation of EP4 receptor-mediated prostaglandin E2 suppression of 3T3-L1 adipocyte differentiation,” Biochemical and Biophysical Research Communications, vol. 322, no. 3, pp. 911–917, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Xie, X. Kang, W. E. Ackerman et al., “Differentiation-dependent regulation of the cyclooxygenase cascade during adipogenesis suggests a complex role for prostaglandins,” Diabetes, Obesity and Metabolism, vol. 8, no. 1, pp. 83–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. P. O. Hétu and D. Riendeau, “Down-regulation of microsomal prostaglandin E2 synthase-1 in adipose tissue by high-fat feeding,” Obesity, vol. 15, no. 1, pp. 60–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Hara, D. Kamei, Y. Sasaki, A. Tanemoto, Y. Nakatani, and M. Murakami, “Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models,” Biochimie, vol. 92, no. 6, pp. 651–659, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. F. Legler, M. Bruckner, E. Uetz-von Allmen, and P. Krause, “Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 2, pp. 198–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. P. J. Jakobsson, S. Thorén, R. Morgenstern, and B. Samuelsson, “Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7220–7225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Samuelsson, R. Morgenstern, and P. J. Jakobsson, “Membrane prostaglandin E synthase-1: a novel therapeutic target,” Pharmacological Reviews, vol. 59, no. 3, pp. 207–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Tanikawa, Y. Ohmiya, H. Ohkubo et al., “Identification and characterization of a novel type of membrane-associated prostaglandin E synthase,” Biochemical and Biophysical Research Communications, vol. 291, no. 4, pp. 884–889, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Tanioka, Y. Nakatani, N. Semmyo, M. Murakami, and I. Kudo, “Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis,” Journal of Biological Chemistry, vol. 275, no. 42, pp. 32775–32782, 2000. View at Scopus
  60. K. Fujimori, T. Maruyama, S. Kamauchi, and Y. Urade, “Activation of adipogenesis by lipocalin-type prostaglandin D synthase-generated Δ12-PGJ2 acting through PPARγ-dependent and independent pathways,” Gene, vol. 505, no. 1, pp. 46–52, 2012.
  61. K. Fujimori, M. Yano, and T. Ueno, “Synergistic suppression of early phase of adipogenesis by microsomal PGE synthase-1 (PTGES1)-produced PGE2 and aldo-keto reductase 1B3-produced PGF2α,” PloS ONE, vol. 7, no. 9, Article ID e44698, 2012.
  62. Y. Urade and O. Hayaishi, “Prostaglandin D synthase: structure and function,” Vitamins and Hormones, vol. 58, pp. 89–120, 2000. View at Scopus
  63. Y. Urade and O. Hayaishi, “Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 259–271, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Kanaoka and Y. Urade, “Hematopoietic prostaglandin D synthase,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 69, no. 2-3, pp. 163–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. L. C. Bell-Parikh, T. Ide, J. A. Lawson, P. McNamara, M. Reilly, and G. A. FitzGerald, “Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the ligation of PPARγ,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 945–955, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. M. S. Hossain, A. A. Chowdhury, M. S. Rahman et al., “Development of enzyme-linked immunosorbent assay for Δ12- prostaglandin J2 and its application to the measurement of the endogenous product generated by cultured adipocytes during the maturation phase,” Prostaglandins and Other Lipid Mediators, vol. 94, no. 3-4, pp. 73–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Fujimori, K. Aritake, and Y. Urade, “A novel pathway to enhance adipocyte differentiation of 3T3-L1 cells by up-regulation of lipocalin-type prostaglandin D synthase mediated by liver X receptor-activated sterol regulatory element-binding protein-1c,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 18458–18466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Ragolia, T. Palaia, C. E. Hall, J. K. Maesaka, N. Eguchi, and Y. Urade, “Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice,” Journal of Biological Chemistry, vol. 280, no. 33, pp. 29946–29955, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Ragolia, C. E. Hall, and T. Palaia, “Lipocalin-type prostaglandin D2 synthase stimulates glucose transport via enhanced GLUT4 translocation,” Prostaglandins and Other Lipid Mediators, vol. 87, no. 1–4, pp. 34–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Tanaka, Y. Miwa, K. Mou et al., “Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice,” Biochemical and Biophysical Research Communications, vol. 378, no. 4, pp. 851–856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Fujitani, K. Aritake, Y. Kanaoka et al., “Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo,” FEBS Journal, vol. 277, no. 6, pp. 1410–1419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Vassaux, D. Gaillard, G. Ailhaud, and R. Negrel, “Prostacyclin is a specific effector of adipose cell differentiation. Its dual role as a cAMP- and Ca2+-elevating agent,” Journal of Biological Chemistry, vol. 267, no. 16, pp. 11092–11097, 1992. View at Scopus
  73. G. Vassaux, D. Gaillard, C. Darimont, G. Ailhaud, and R. Negrel, “Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2: physiological implications,” Endocrinology, vol. 131, no. 5, pp. 2393–2398, 1992. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Aubert, P. Saint-Marc, N. Belmonte, C. Dani, R. Négrel, and G. Ailhaud, “Prostacyclin IP receptor up-regulates the early expression of C/EBPβ and C/EBPδ in preadipose cells,” Molecular and Cellular Endocrinology, vol. 160, no. 1-2, pp. 149–156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Massiera, P. Saint-Marc, J. Seydoux et al., “Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern?” Journal of Lipid Research, vol. 44, no. 2, pp. 271–279, 2003. View at Publisher · View at Google Scholar · View at Scopus