About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2012 (2012), Article ID 929052, 9 pages
http://dx.doi.org/10.1155/2012/929052
Research Article

The PPAR Gamma Agonist Troglitazone Regulates Erk 1/2 Phosphorylation via a PPARγ-Independent, MEK-Dependent Pathway in Human Prostate Cancer Cells

1Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
2Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA

Received 1 September 2011; Revised 22 November 2011; Accepted 23 November 2011

Academic Editor: R. P. Phipps

Copyright © 2012 Adrienne Bolden et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Scopus
  2. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Nolan, B. Ludvik, P. Beerdsen, M. Joyce, and J. Olefsky, “Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone,” New England Journal of Medicine, vol. 331, no. 18, pp. 1188–1193, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Elstner, C. Müller, K. Koshizuka et al., “Ligands for peroxisome proliferator-activated receptory and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8806–8811, 1998. View at Scopus
  5. K. Y. Kim, S. S. Kim, and H. G. Cheon, “Differential anti-proliferative actions of peroxisome proliferator-activated receptor-γ agonists in MCF-7 breast cancer cells,” Biochemical Pharmacology, vol. 72, no. 5, pp. 530–540, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. Qin, R. Burghardt, R. Smith, M. Wormke, J. Stewart, and S. Safe, “Peroxisome proliferator-activated receptor γ agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor α in MCF-7 breast cancer cells,” Cancer Research, vol. 63, no. 5, pp. 958–964, 2003. View at Scopus
  7. F. Yin, S. Wakino, Z. Liu et al., “Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators,” Biochemical and Biophysical Research Communications, vol. 286, no. 5, pp. 916–922, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. L. Chaffer, D. M. Thomas, E. W. Thompson, and E. D. Williams, “PPARγ-independent induction of growth arrest and apoptosis in prostate and bladder carcinoma,” BMC Cancer, vol. 6, article 53, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. Y. F. Guan, Y. H. Zhang, R. M. Breyer, L. Davis, and M. D. Breyer, “Expression of peroxisome proliferator-activated receptor γ (PPARγ) in human transitional bladder cancer and its role in inducing cell death,” Neoplasia, vol. 1, no. 4, pp. 330–339, 1999. View at Scopus
  10. W. K. Leung, A. Bai, V. Y. W. Chan et al., “Effect of peroxisome proliferator activated receptor γ ligands on growth and gene expression profiles of gastric cancer cells,” Gut, vol. 53, no. 3, pp. 331–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Lin, W. C. Chen, X. Bai, and Y. D. Wang, “Activation of peroxisome proliferator-activated receptor γ inhibits cell growth via apoptosis and arrest of the cell cycle in human colorectal cancer,” Journal of Digestive Diseases, vol. 8, no. 2, pp. 82–88, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. Takano, T. Kubota, H. Nishibori et al., “Pioglitazone, a ligand for peroxisome proliferator-activated receptor-γ acts as an inhibitor of colon cancer liver metastasis,” Anticancer Research, vol. 28, no. 6, pp. 3593–3599, 2008. View at Scopus
  13. T. Yoshizumi, T. Ohta, I. Ninomiya et al., “Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects,” International Journal of Oncology, vol. 25, no. 3, pp. 631–639, 2004. View at Scopus
  14. T. O. Akinyeke and L. V. Stewart, “Troglitazone suppresses c-Myc levels in human prostate cancer cells via a PPARγ-independent mechanism,” Cancer Biology and Therapy, vol. 11, no. 12, pp. 1046–1058, 2011. View at Publisher · View at Google Scholar
  15. B. E. Lyles, T. O. Akinyeke, P. E. Moss, and L. V. Stewart, “Thiazolidinediones regulate expression of cell cycle proteins in human prostate cancer cells via PPARγ-dependent and PPARγ-independent pathways,” Cell Cycle, vol. 8, no. 2, pp. 268–277, 2009. View at Scopus
  16. E. Mueller, M. Smith, P. Sarraf et al., “Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 10990–10995, 2000. View at Scopus
  17. S. B. Shappell, R. A. Gupta, S. Manning et al., “15S-hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor γ and inhibits proliferation in PC3 prostate carcinoma cells,” Cancer Research, vol. 61, no. 2, pp. 497–503, 2001. View at Scopus
  18. T. Kubota, K. Koshizuka, E. A. Williamson et al., “Ligand for peroxisome proliferator-activated receptor γ (Troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo,” Cancer Research, vol. 58, no. 15, pp. 3344–3352, 1998. View at Scopus
  19. D. Panigrahy, S. Singer, L. Q. Shen et al., “PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis,” Journal of Clinical Investigation, vol. 110, no. 7, pp. 923–932, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. I. Hisatake, T. Ikezoe, M. Carey, S. Holden, S. Tomoyasu, and H. P. Koeffler, “Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor γ in human prostate cancer,” Cancer Research, vol. 60, no. 19, pp. 5494–5498, 2000. View at Scopus
  21. C. W. Shiau, C. C. Yang, S. K. Kulp et al., “Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ,” Cancer Research, vol. 65, no. 4, pp. 1561–1569, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. K. Radhakrishnan and A. L. Gartel, “The PPAR-γ agonist pioglitazone post-transcriptionally induces p21 in PC3 prostate cancer but not in other cell lines,” Cell Cycle, vol. 4, no. 4, pp. 582–584, 2005. View at Scopus
  23. S. Wei, L.-F. Lin, C.-C. Yang et al., “Thiazolidinediones modulate the expression of β-catenin and other cell-cycle regulatory proteins by targeting the F-box proteins of Skp1-Cul1-F-box protein E3 ubiquitin ligase independently of peroxisome proliferator-activated receptor γ,” Molecular Pharmacology, vol. 72, no. 3, pp. 725–733, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. S. Wei, H. C. Yang, H. C. Chuang et al., “A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells,” Journal of Biological Chemistry, vol. 283, no. 39, pp. 26759–26770, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. I. Wortzel and R. Seger, “The ERK cascade: distinct functions within various subcellular organelles,” Genes and Cancer, vol. 2, no. 3, pp. 195–209, 2011. View at Publisher · View at Google Scholar · View at PubMed
  26. Y. Mebratu and Y. Tesfaigzi, “How ERK1/2 activation controls cell proliferation and cell death is subcellular localization the answer?” Cell Cycle, vol. 8, no. 8, pp. 1168–1175, 2009. View at Scopus
  27. D. Gioeli, J. W. Mandell, G. R. Petroni, H. F. Frierson, and M. J. Weber, “Activation of mitogen-activated protein kinase associated with prostate cancer progression,” Cancer Research, vol. 59, no. 2, pp. 279–284, 1999. View at Scopus
  28. H. Oka, Y. Chatani, M. Kohno, M. Kawakita, and O. Ogawa, “Constitutive activation of the 41- and 43-kDa mitogen-activated protein (MAP) kinases in the progression of prostate cancer to an androgen-independent state,” International Journal of Urology, vol. 12, no. 10, pp. 899–905, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. O. S. Gardner, B. J. Dewar, H. S. Earp, J. M. Samet, and L. M. Graves, “Dependence of peroxisome proliferator-activated receptor ligand-induced mitogen-activated protein kinase signaling on epidermal growth factor receptor transactivation,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 46261–46269, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. J. Baek, L. C. Wilson, L. C. Hsi, and T. E. Eling, “Troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, selectively induces the early growth response-1 gene independently of PPARγ: a novel mechanism for its anti-tumorigenic activity,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5845–5853, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. H. Kim, Y. S. Cho, J. M. Park, S. O. Yoon, K. W. Kim, and A. S. Chung, “Pro-MMP-2 activation by the PPARγ agonist, ciglitazone, induces cell invasion through the generation of ROS and the activation of ERK,” FEBS Letters, vol. 581, no. 17, pp. 3303–3310, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. F. Chen, M. Wang, J. P. O'Connor, M. He, T. Tripathi, and L. E. Harrison, “Phosphorylation of PPARγ via active ERK1/2 Leads to its physical association with p65 and inhibition of NF-κβ,” Journal of Cellular Biochemistry, vol. 90, no. 4, pp. 732–744, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. Li, T. W. Lee, A. P. C. Yim, T. S. K. Mok, and G. G. Chen, “Apoptosis induced by troglitazone is both peroxisome proliterator-activated receptor-γ- and ERK-dependent in human non-small lung cancer cells,” Journal of Cellular Physiology, vol. 209, no. 2, pp. 428–438, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Chbicheb, X. Yao, J.-L. Rodeau et al., “EGR1 expression: a calcium and ERK1/2 mediated PPARγ-independent event involved in the antiproliferative effect of 15-deoxy-Δ12,14-prostaglandin J2 and thiazolidinediones in breast cancer cells,” Biochemical Pharmacology, vol. 81, no. 9, pp. 1087–1097, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. M. Adams, M. J. Reginato, D. Shao, M. A. Lazar, and V. K. Chatterjee, “Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site,” Journal of Biological Chemistry, vol. 272, no. 8, pp. 5128–5132, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. H. S. Camp and S. R. Tafuri, “Regulation of peroxisome proliferator-activated receptor γ activity by mitogen-activated protein kinase,” Journal of Biological Chemistry, vol. 272, no. 16, pp. 10811–10816, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Hu, J. B. Kim, P. Sarraf, and B. M. Spiegelman, “Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ,” Science, vol. 274, no. 5295, pp. 2100–2103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. P. E. Moss, B. E. Lyles, and L. V. Stewart, “The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells,” Experimental Cell Research, vol. 316, no. 20, pp. 3478–3488, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. C. J. Sherr and J. M. Roberts, “CDK inhibitors: positive and negative regulators of G1-phase progression,” Genes and Development, vol. 13, no. 12, pp. 1501–1512, 1999. View at Scopus
  40. R. H. Weiss, “p21Waf1/Cip1 as a therapeutic target in breast and other cancers,” Cancer Cell, vol. 4, no. 6, pp. 425–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Yamada, K. Horiguchi, R. Umezawa et al., “Troglitazone, a ligand of peroxisome proliferator-activated receptor-γ, stabilizes NUCB2 (nesfatin) mRNA by activating the ERK1/2 pathway: isolation and characterization of the human NUCB2 gene,” Endocrinology, vol. 151, no. 6, pp. 2494–2503, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Papineni, S. Chintharlapalli, and S. Safe, “Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate is a peroxisome proliferator-activated receptor-γ agonist that induces receptor-independent apoptosis in LNCaP prostate cancer cells,” Molecular Pharmacology, vol. 73, no. 2, pp. 553–565, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. E. Burgermeister, D. Chuderland, T. Hanoch, M. Meyer, M. Liscovitch, and R. Seger, “Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor γ,” Molecular and Cellular Biology, vol. 27, no. 3, pp. 803–817, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. A. Bae and B. J. Song, “Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells,” Molecular Pharmacology, vol. 63, no. 2, pp. 401–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Yin, D. Bruemmer, F. Blaschke, W. A. Hsueh, R. E. Law, and A. J. Van Herle, “Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells,” Oncogene, vol. 23, no. 26, pp. 4614–4623, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus