About this Journal Submit a Manuscript Table of Contents
PPAR Research
Volume 2013 (2013), Article ID 982462, 8 pages
http://dx.doi.org/10.1155/2013/982462
Research Article

Combined Effects of PPARγ Agonists and Epidermal Growth Factor Receptor Inhibitors in Human Proximal Tubule Cells

Department of Medicine, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney, Australia

Received 3 December 2012; Accepted 25 January 2013

Academic Editor: Tom Hsun-Wei Huang

Copyright © 2013 Katherine Pegg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Saad, V. A. Stevens, L. Wassef et al., “High glucose transactivates the EGF receptor and up-regulates serum glucocorticoid kinase in the proximal tubule,” Kidney International, vol. 68, no. 3, pp. 985–997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Portik-Dobos, A. K. Harris, W. Song et al., “Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes,” American Journal of Physiology, vol. 290, no. 2, pp. R435–R441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Sis, S. Sarioglu, A. Celik, M. Zeybel, A. Soylu, and S. Bora, “Epidermal growth factor receptor expression in human renal allograft biopsies: an immunohistochemical study,” Transplant Immunology, vol. 13, no. 3, pp. 229–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Konishi and B. C. Berk, “Epidermal growth factor receptor transactivation is regulated by glucose in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 278, no. 37, pp. 35049–35056, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. T. Andresen, J. J. Linnoila, E. K. Jackson, and G. G. Romero, “Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells,” Hypertension, vol. 41, no. 3, pp. 781–786, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Garty, “Regulation of the epithelial Na+ channel by aldosterone: open questions and emerging answers,” Kidney International, vol. 57, no. 4, pp. 1270–1276, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Wu, F. Peng, B. Zhang et al., “EGFR-PLCγ1 signaling mediates high glucose-induced PKCβ1-Akt activation and collagen I upregulation in mesangial cells,” American Journal of Physiology, vol. 297, no. 3, pp. F822–F834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zhang, C. W. Park, F. Zheng, X. Fan, G. E. Striker, M. D. Breyer, et al., “Endogenous PPARg activity ameliorates diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 14, p. 392A, 2003.
  9. C. Baylis, E. A. Atzpodien, G. Freshour, and K. Engels, “Peroxisome proliferator-activated receptor γ agonist provides superior renal protection versus angiotensin-converting enzyme inhibition in a rat model of type 2 diabetes with obesity,” Journal of Pharmacology and Experimental Therapeutics, vol. 307, no. 3, pp. 854–860, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Katavetin, S. Eiam-Ong, and S. Suwanwalaikorn, “Pioglitazone reduces urinary protein and urinary transforming growth factor-β excretion in patients with type 2 diabetes and overt nephropathy,” Journal of the Medical Association of Thailand, vol. 89, no. 2, pp. 170–177, 2006. View at Scopus
  11. H. F. Liu, L. Q. Guo, Y. Y. Huang et al., “Thiazolidinedione attenuate proteinuria and glomerulosclerosis in Adriamycin-induced nephropathy rats via slit diaphragm protection: original Article,” Nephrology, vol. 15, no. 1, pp. 75–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Nofziger and B. L. Blazer-Yost, “PPARγ agonists, modulation of ion transporters, and fluid retention,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2481–2483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Singh, Y. K. Loke, and C. D. Furberg, “Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1189–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Saad, D. J. Agapiou, X. M. Chen, V. Stevens, and C. A. Pollock, “The role of Sgk-1 in the upregulation of transport proteins by PPAR-γ agonists in human proximal tubule cells,” Nephrology Dialysis Transplantation, vol. 24, no. 4, pp. 1130–1141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Vallon and F. Lang, “New insights into the role of serum- and glucocorticoid-inducible kinase SGK1 in the regulation of renal function and blood pressure,” Current Opinion in Nephrology and Hypertension, vol. 14, no. 1, pp. 59–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Panchapakesan, C. A. Pollock, and X. M. Chen, “The effect of high glucose and PPAR-γ agonists on PPAR-γ expression and function in HK-2 cells,” American Journal of Physiology, vol. 287, no. 3, pp. F528–F534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Zafiriou, S. R. Stanners, T. S. Polhill, P. Poronnik, and C. A. Pollock, “Pioglitazone increases renal tubular cell albumin uptake but limits proinflammatory and fibrotic responses,” Kidney International, vol. 65, no. 5, pp. 1647–1653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Zafiriou, S. R. Stanners, S. Saad, T. S. Polhill, P. Poronnik, and C. A. Pollock, “Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. 638–645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Panchapakesan, S. Sumual, C. A. Pollock, and X. Chen, “PPARγ agonists exert antifibrotic effects in renal tubular cells exposed to high glucose,” American Journal of Physiology, vol. 289, no. 5, pp. F1153–F1158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Panchapakesan, X. M. Chen, and C. A. Pollock, “Drug insight: thiazolidinediones and diabetic nephropathy—relevance to renoprotection,” Nature Clinical Practice Nephrology, vol. 1, no. 1, pp. 33–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Wabel, U. Moissl, P. Chamney et al., “Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload,” Nephrology Dialysis Transplantation, vol. 23, no. 9, pp. 2965–2971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Rozansky, J. Wang, N. Doan et al., “Hypotonic induction of SGK1 and Na+ transport in A6 cells,” American Journal of Physiology, vol. 283, no. 1, pp. F105–F113, 2002. View at Scopus
  23. K. Omata, N. G. Abraham, and M. L. Schwartzman, “Renal cytochrome P-450-arachidonic acid metabolism: localization and hormonal regulation in SHR,” American Journal of Physiology, vol. 262, no. 4, pp. F591–F599, 1992. View at Scopus
  24. J. Beltowski and E. Lowicka, “EGF receptor as a drug target in arterial hypertension,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 5, pp. 526–538, 2009. View at Publisher · View at Google Scholar
  25. A. W. Krug, F. Papavassiliou, U. Hopfer, K. J. Ullrich, and M. Gekle, “Aldosterone stimulates surface expression of NHE3 in renal proximal brush borders,” Pflugers Archiv European Journal of Physiology, vol. 446, no. 4, pp. 492–496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. W. Krug, C. Grossmann, C. Schuster et al., “Aldosterone stimulates epidermal growth factor receptor expression,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 43060–43066, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. I. F. Benter, M. Benboubetra, A. J. Hollins, M. H. M. Yousif, H. Canatan, and S. Akhtar, “Early inhibition of EGFR signaling prevents diabetes-induced up-regulation of multiple gene pathways in the mesenteric vasculature,” Vascular Pharmacology, vol. 51, no. 4, pp. 236–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Nakopoulou, K. Stefanaki, J. Boletis et al., “Immunohistochemical study of epidermal growth factor receptor (EFGR) in various types of renal injury,” Nephrology Dialysis Transplantation, vol. 9, no. 7, pp. 764–769, 1994. View at Scopus
  29. R. Harris, “EGFR signaling in podocytes at the root of glomerular disease,” Nature Medicine, vol. 17, no. 10, pp. 1188–1189, 2011. View at Publisher · View at Google Scholar
  30. G. Bollee, M. Flamant, S. Schordan, C. Fligny, E. Rumpel, M. Milon, et al., “Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis,” Nature Medicine, vol. 17, no. 10, pp. 1242–1250, 2011. View at Publisher · View at Google Scholar
  31. M. Flamant, G. Bollee, C. Henique, and P. L. Tharaux, “Epidermal growth factor: a new therapeutic target in glomerular disease,” Nephrology Dialysis Transplantation, vol. 27, no. 4, pp. 1297–1304, 2012. View at Publisher · View at Google Scholar
  32. R. E. Gilbert, A. Cox, P. G. McNally et al., “Increased epidermal growth factor in experimental diabetes related kidney growth in rats,” Diabetologia, vol. 40, no. 7, pp. 778–785, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Chen, Z. A. Khan, M. Cukiernik, and S. Chakrabarti, “Differential activation of NF-κB and AP-1 in increased fibronectin synthesis in target organs of diabetic complications,” American Journal of Physiology, vol. 284, no. 6, pp. E1089–E1097, 2003. View at Scopus
  34. C. Weigert, U. Sauer, K. Brodbeck, A. Pfeiffer, H. U. Häring, and E. D. Schleicher, “AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-β1 promoter in mesangial cells,” Journal of the American Society of Nephrology, vol. 11, no. 11, pp. 2007–2016, 2000. View at Scopus
  35. R. P. Nagarajan, F. Chen, W. Li et al., “Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB,” Biochemical Journal, vol. 348, no. 3, pp. 591–596, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Ha, R. Y. Mi, J. C. Yoon, M. Kitamura, and B. L. Hi, “Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells,” Journal of the American Society of Nephrology, vol. 13, no. 4, pp. 894–902, 2002. View at Scopus
  37. N. Liu, J. K. Guo, M. Pang, E. Tolbert, M. Ponnusamy, R. Gong, et al., “Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis,” Journal of the American Society of Nephrology, vol. 23, no. 5, pp. 854–867, 2012. View at Publisher · View at Google Scholar
  38. L. Wassef, D. J. Kelly, and R. E. Gilbert, “Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes,” Kidney International, vol. 66, no. 5, pp. 1805–1814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Andrew, J. W. Kathryn, J. C. Alison, Z. Yuan, E. G. Richard, and J. K. Darren, “Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy,” Nephrology, vol. 16, no. 6, pp. 573–581, 2011. View at Publisher · View at Google Scholar