About this Journal Submit a Manuscript Table of Contents
Pathology Research International
Volume 2011 (2011), Article ID 605042, 12 pages
http://dx.doi.org/10.4061/2011/605042
Review Article

Tumor Suppressors and Cell-Cycle Proteins in Lung Cancer

1Section of Pathology, Department of Biochemistry, Second University of Naples, 80138 Naples, Italy
2Department of Public Health, Second University of Naples, 80138 Naples, Italy
3Third Division Cotugno Hospital, 80100 Naples, Italy
4SAFU Department, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy

Received 31 December 2010; Accepted 8 August 2011

Academic Editor: Ka F. To

Copyright © 2011 Alfonso Baldi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Zöchbauer-Müller, A. F. Gazdar, and J. D. Minna, “Molecular pathogenesis of lung cancer,” Annual Review of Physiology, vol. 64, pp. 681–708, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. T. A. D'Amico, T. A. Aloia, M. B. Moore et al., “Predicting the sites of metastases from lung cancer using molecular biologic markers,” Annals of Thoracic Surgery, vol. 72, no. 4, pp. 1144–1148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Lu, J. C. Soria, X. Tang et al., “Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers,” Journal of Clinical Oncology, vol. 22, no. 22, pp. 4575–4583, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. Feld, L. V. Rubinstein, and T. H. Weisenberger, “Sites of recurrence in resected stage I non-small-cell lung cancer: a guide for future studies,” Journal of Clinical Oncology, vol. 2, no. 12, pp. 1352–1358, 1984. View at Scopus
  5. T. A. D'Amico, M. Massey, J. E. Herndon II, M. B. Moore, and D. H. Harpole, “A biologic risk model for stage I lung cancer: immunohistochemical analysis of 408 patients with the use of ten molecular markers,” Journal of Thoracic and Cardiovascular Surgery, vol. 117, no. 4, pp. 736–743, 1999. View at Scopus
  6. R. Bordoni, “Consensus conference: multimodality management of early- and intermediate-stage non-small cell lung cancer,” The Oncologist, vol. 13, no. 9, pp. 945–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Liu, C. L. Huang, K. Kameyama et al., “E-cadherin expression associated with differentiation and prognosis in patients with non-small cell lung cancer,” Annals of Thoracic Surgery, vol. 71, no. 3, pp. 949–954, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. A. D'Amico, T. A. Aloia, M. B. H. Moore et al., “Molecular biologic substaging of stage I lung cancer according to gender and histology,” Annals of Thoracic Surgery, vol. 69, no. 3, pp. 882–886, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Shopland, “Tobacco use and its contribution to early cancer mortality with a special emphasis on cigarette smoking,” Environmental Health Perspectives, vol. 103, no. 8, pp. 131–142, 1995. View at Scopus
  10. V. Esposito, A. Baldi, A. De Luca et al., “Prognostic value of p53 in non-small cell lung cancer: relationship with proliferating cell nuclear antigen and cigarette smoking,” Human Pathology, vol. 28, no. 2, pp. 233–237, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Esposito, A. Baldi, A. De Luca et al., “Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer,” Cancer Research, vol. 57, no. 16, pp. 3381–3385, 1997. View at Scopus
  12. M. Caputi, V. Esposito, A. Baldi et al., “P21 expression in non-small cell lung cancer: relationship to survival,” The American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 2, pp. 213–217, 1998. View at Scopus
  13. A. M. Groeger, M. Caputi, V. Esposito et al., “Expression of p21 in non-small cell lung cancer relationship with PCNA,” Anticancer Research, vol. 20, no. 5, pp. 3301–3306, 2000. View at Scopus
  14. A. Baldi, V. Esposito, A. De Luca et al., “Differential expression of Rb2/p130 and p107 in normal human tissues and in primary lung cancer,” Clinical Cancer Research, vol. 3, no. 10, pp. 1691–1697, 1997. View at Scopus
  15. V. Esposito, A. M. Groeger, L. De et al., “Expression of surface protein receptors in lung cancer,” Anticancer Research, vol. 22, no. 6 C, pp. 4039–4044, 2002. View at Scopus
  16. A. M. Groeger, V. Esposito, A. De Luca et al., “Prognostic value of immunohistochemical expression of p53, BAX, BCL-2 and BCL-Xl in resected non-small cell lung cancer,” Histopathology, vol. 44, no. 1, pp. 54–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Vincenzi, G. Schiavon, M. Silletta et al., “Cell cycle alterations and lung cancer,” Histology and Histopathology, vol. 21, pp. 423–435, 2006.
  18. V. Esposito, M. Campioni, A. De Luca et al., “Analysis of HtrA1 serine protease expression in human lung cancer,” Anticancer Research, vol. 26, no. 5, pp. 3455–3460, 2006. View at Scopus
  19. M. Campioni, V. Ambrogi, E. Pompeo et al., “Identification of genes down-regulated during lung cancer progression: a cDNA array study,” Journal of Experimental and Clinical Cancer Research, vol. 27, no. 1, article 38, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. T. C. Mineo, V. Ambrogi, A. Baldi et al., “Prognostic impact of VEGF, CD31, CD34, and CD105 expression and tumor vessel invasion after radical surgery for IB-IIA non-small cell lung cancer,” Journal of Clinical Pathology, vol. 57, no. 6, pp. 591–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Matsushime, M. E. Ewen, D. K. Strom et al., “Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins,” Cell, vol. 71, no. 2, pp. 323–334, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. Sherr and J. M. Roberts, “CDK inhibitors: positive and negative regulators of G1-phase progression,” Genes and Development, vol. 13, no. 12, pp. 1501–1512, 1999. View at Scopus
  23. S. Jinno, K. Suto, A. Nagata et al., “Cdc25A is a novel phosphatase functioning early in the cell cycle,” The EMBO Journal, vol. 13, no. 7, pp. 1549–1556, 1994. View at Scopus
  24. P. Saha, Q. Eichbaum, E. D. Silberman, B. J. Mayer, and A. Dutta, “p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases,” Molecular and Cellular Biology, vol. 17, no. 8, pp. 4338–4345, 1997. View at Scopus
  25. I. Hoffmann, G. Draetta, and E. Karsenti, “Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition,” The EMBO Journal, vol. 13, no. 18, pp. 4302–4310, 1994. View at Scopus
  26. I. Blomberg and I. Hoffmann, “Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases,” Molecular and Cellular Biology, vol. 19, no. 9, pp. 6183–6194, 1999. View at Scopus
  27. C. Lammer, S. Wagerer, R. Saffrich, D. Mertens, W. Ansorge, and I. Hoffmann, “The cdc25B phosphatase is essential for the G2/M phase transition in human cells,” Journal of Cell Science, vol. 111, no. 16, pp. 2445–2453, 1998. View at Scopus
  28. P. A. Garner-Hamrick and C. Fisher, “Antisense phosphorothioate oligonucleotides specifically down-regulate cdc25B causing S-phase delay and persistent antiproliferative effects,” International Journal of Cancer, vol. 76, no. 5, pp. 720–728, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Strausfeld, A. Fernandez, J. P. Capony et al., “Activation of p34(cdc2) protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34(cdc2) on sites phosphorylated at mitosis,” Journal of Biological Chemistry, vol. 269, no. 8, pp. 5989–6000, 1994. View at Scopus
  30. P. D. Adams, “Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks,” Biochimica et Biophysica Acta, vol. 1471, no. 3, pp. M123–M133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. W. R. Sellers and W. G. Kaelin, “pRB as a modulator of transcription,” Biochimica et Biophysica Acta, vol. 1288, pp. M1–M5, 1996.
  32. T. L. Sladek, “E2F transcription factor action, regulation and possible role in human cancer,” Cell Proliferation, vol. 30, no. 3-4, pp. 97–105, 1997. View at Scopus
  33. E. S. Knudsen, C. Buckmaster, T. T. Chen, J. R. Feramisco, and J. Y. J. Wang, “Inhibition of DNA synthesis by RB: effects on G1/S transition and S-phase progression,” Genes and Development, vol. 12, no. 15, pp. 2278–2292, 1998. View at Scopus
  34. W. R. Sellers and W. G. Kaelin, “Role of the retinoblastoma protein in the pathogenesis of human cancer,” Journal of Clinical Oncology, vol. 15, no. 11, pp. 3301–3312, 1997. View at Scopus
  35. J. F. Diffley, “Eukaryotic DNA replication,” Current Opinion in Cell Biology, vol. 6, no. 3, pp. 368–372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Rowley, S. J. Dowell, and J. F. Diffley, “Recent developments in the initiation of chromosomal DNA replication: a complex picture emerges,” Biochimica et Biophysica Acta, vol. 1217, no. 3, pp. 239–256, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. S. P. Bell and B. Stillman, “ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex,” Nature, vol. 357, no. 6374, pp. 128–134, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. B. Stillman, S. P. Bell, A. Dutta, and Y. Marahrens, “DNA replication and the cell cycle,” Ciba Foundation Symposium, vol. 170, pp. 147–156, 1992. View at Scopus
  39. A. Dutta and S. P. Bell, “Initiation of DNA replication in eukaryotic cells,” Annual Review of Cell and Developmental Biology, vol. 13, pp. 293–332, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. G. T. Maine, P. Sinha, and B. K. Tye, “Mutants of S. cerevisiae defective in the maintenance of minichromosomes,” Genetics, vol. 106, no. 3, pp. 365–385, 1984. View at Scopus
  41. H. Takisawa, S. Mimura, and Y. Kubota, “Eukaryotic DNA replication: from pre-replication complex to initiation complex,” Current Opinion in Cell Biology, vol. 12, no. 6, pp. 690–696, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Wuarin and P. Nurse, “Regulating S phase: CDKs, licensing and proteolysis,” Cell, vol. 85, no. 6, pp. 785–787, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Stillman, “Cell cycle control of DNA replication,” Science, vol. 274, no. 5293, pp. 1659–1664, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Krek and E. A. Nigg, “Differential phosphorylation of vertebrate p34(cdc2) kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites,” The EMBO Journal, vol. 10, no. 2, pp. 305–316, 1991. View at Scopus
  45. T. R. Coleman and W. G. Dunphy, “Cdc2 regulatory factors,” Current Opinion in Cell Biology, vol. 6, no. 6, pp. 877–882, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Hagting, C. Karlsson, P. Clute, M. Jackman, and J. Pines, “MPF localization is controlled by nuclear export,” The EMBO Journal, vol. 17, no. 14, pp. 4127–4138, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. E. A. Nigg, “Targets of cyclin-dependent protein kinases,” Current Opinion in Cell Biology, vol. 5, no. 2, pp. 187–193, 1993. View at Scopus
  48. A. Blangy, H. A. Lane, P. d'Hérin, M. Harper, M. Kress, and E. A. Nigg, “Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo,” Cell, vol. 83, no. 7, pp. 1159–1169, 1995. View at Scopus
  49. P. K. Sorger, M. Dobles, R. Tournebize, and A. A. Hyman, “Coupling cell division and cell death to microtubule dynamics,” Current Opinion in Cell Biology, vol. 9, no. 6, pp. 807–814, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Llamazares, A. Moreira, A. Tavares et al., “Polo encodes a protein kinase homolog required for mitosis in Drosophila,” Genes and Development, vol. 5, no. 12, pp. 2153–2165, 1991. View at Scopus
  51. D. O. Morgan, “Regulation of the APC and the exit from mitosis,” Nature Cell Biology, vol. 1, no. 2, pp. E47–E53, 1999. View at Scopus
  52. P. Gallant and E. A. Nigg, “Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells,” Journal of Cell Biology, vol. 117, no. 1, pp. 213–224, 1992. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Clute and J. Pines, “Temporal and spatial control of cyclin B1 destruction in metaphase,” Nature Cell Biology, vol. 1, no. 2, pp. 82–87, 1999. View at Scopus
  54. H. Funabiki, H. Yamano, K. Kumada, K. Nagao, T. Hunt, and M. Yanagida, “Cut2 proteolysis required for sister-chromatid separation in fission yeast,” Nature, vol. 381, no. 6581, pp. 438–441, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. N. Boddy and P. Russell, “DNA replication checkpoint,” Current Biology, vol. 11, no. 23, pp. R953–R956, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Ho and S. F. Dowdy, “Regulation of G1 cell-cycle progression by oncogenes and tumor suppressor genes,” Current Opinion in Genetics and Development, vol. 12, no. 1, pp. 47–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Aleem, H. Kiyokawa, and P. Kaldis, “Cdc2-cyclin E complexes regulate the G1/S phase transition,” Nature Cell Biology, vol. 7, no. 8, pp. 831–836, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. S. A. Ezhevsky, A. Ho, M. Becker-Hapak, P. K. Davis, and S. F. Dowdy, “Differential regulation of retinoblastoma tumor suppressor protein by G1 cyclin-dependent kinase complexes in vivo,” Molecular and Cellular Biology, vol. 21, no. 14, pp. 4773–4784, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. G. Fang, H. Yu, and M. W. Kirschner, “Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1,” Molecular Cell, vol. 2, no. 2, pp. 163–171, 1998. View at Scopus
  60. J. Y. Hsu, J. D. Reimann, C. S. Sørensen, J. Lukas, and P. K. Jackson, “E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1),” Nature Cell Biology, vol. 4, no. 5, pp. 358–366, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. C. Lukas, C. S. Sørensen, E. Kramer et al., “Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex,” Nature, vol. 401, no. 6755, pp. 815–818, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. J. Falck, N. Mailand, R. G. Syljuåsen, J. Bartek, and J. Lukas, “The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis,” Nature, vol. 410, no. 6830, pp. 842–847, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. V. Costanzo, K. Robertson, C. Y. Ying et al., “Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage,” Molecular Cell, vol. 6, no. 3, pp. 649–659, 2000. View at Scopus
  64. M. B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig, “Participation of p53 protein in the cellular response to DNA damage,” Cancer Research, vol. 51, no. 23, pp. 6304–6311, 1991. View at Scopus
  65. N. C. Reich and A. J. Levine, “Growth regulation of a cellular tumour antigen, p53, in nontransformed cells,” Nature, vol. 308, no. 5955, pp. 199–201, 1984. View at Scopus
  66. E. Reihsaus, M. Kohler, S. Kraiss, M. Oren, and M. Montenarh, “Regulation of the level of the oncoprotein p53 in non-transformed and transformed cells,” Oncogene, vol. 5, no. 1, pp. 137–145, 1990. View at Scopus
  67. J. W. Harper, G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge, “The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases,” Cell, vol. 75, no. 4, pp. 805–816, 1993. View at Publisher · View at Google Scholar · View at Scopus
  68. C. X Deng, P. M. Zhang, J. W. Herper, S. J. Elledge, and P. Leder, “Mice lacking p21(CIP1/WAF1) undergo normal development, but are defective in G1 checkpoint control,” Cell, vol. 82, no. 4, pp. 675–684, 1995. View at Scopus
  69. T. Waldman, K. W. Kinzler, and B. Vogelstein, “p21 is necessary for the p53-mediated G1 arrest in human cancer cells,” Cancer Research, vol. 55, no. 22, pp. 5187–5190, 1995. View at Scopus
  70. S. Pavey, S. Conroy, T. Russell, and B. Gabrielli, “Ultraviolet radiation induces p16(CDKN2A) expression in human skin,” Cancer Research, vol. 59, no. 17, pp. 4185–4189, 1999. View at Scopus
  71. D. E. Quelle, F. Zindy, R. A. Ashmun, and C. J. Sherr, “Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest,” Cell, vol. 83, no. 6, pp. 993–1000, 1995. View at Publisher · View at Google Scholar · View at Scopus
  72. N. E. Sharpless and R. A. DePinho, “The INK4A/ARF locus and its two gene products,” Current Opinion in Genetics and Development, vol. 9, no. 1, pp. 22–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. P. L. Porter, K. E. Malone, P. J. Heagerty et al., “Expression of cell-cycle regulators p27(Kip1) and cyclin E, alone and in combination, correlate with survival in young breast cancer patients,” Nature Medicine, vol. 3, no. 2, pp. 222–225, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Viglietto, M. L. Motti, P. Bruni et al., “Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27kip1 by PKB/Akt-mediated phosphorylation in breast cancer,” Nature Medicine, vol. 8, no. 10, pp. 1136–1144, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. C. J. Bakkenist and M. B. Kastan, “DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation,” Nature, vol. 421, no. 6922, pp. 499–506, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. Y. Shiloh and M. B. Kastan, “ATM: genome stability, neuronal development, and cancer cross paths,” Advances in Cancer Research, vol. 83, pp. 209–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. D. S. Lim, S. T. Kim, B. Xu et al., “ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway,” Nature, vol. 404, no. 6778, pp. 613–614, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. T. Taniguchi, I. Garcia-Higuera, B. Xu et al., “Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways,” Cell, vol. 109, no. 4, pp. 459–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. P. T. Yazdi, Y. Wang, S. Zhao, N. Patel, E. Y. Lee, and J. Qin, “SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint,” Genes and Development, vol. 16, no. 5, pp. 571–582, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. B. Xu, A. H. O'Donnell, S. T. Kim, and M. B. Kastan, “Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation,” Cancer Research, vol. 62, no. 16, pp. 4588–4591, 2002. View at Scopus
  81. A. Hwang and R. J. Muschel, “Radiation and the G2 phase of the cell cycle,” Radiation Research, vol. 150, no. 5, pp. S52–S59, 1998. View at Scopus
  82. Y. Sanchez, S. Wong, R. S. Thoma et al., “Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25,” Science, vol. 277, no. 5331, pp. 1497–1501, 1997. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Furnari, N. Rhind, and P. Russell, “Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase,” Science, vol. 277, no. 5331, pp. 1495–1497, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. V. A. J. Smits and R. H. Medema, “Checking out the G2/M transition,” Biochimica et Biophysica Acta—Gene Structure and Expression, vol. 1519, no. 1-2, pp. 1–12, 2001. View at Publisher · View at Google Scholar
  85. V. A. J. Smits, R. Klompmaker, L. Arnaud, G. Rijksen, E. A. Nigg, and R. H. Medema, “Polo-like kinase-1 is a target of the DNA damage checkpoint,” Nature Cell Biology, vol. 2, no. 9, pp. 672–676, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. S. A. Innocente, J. L. A. Abrahamson, J. P. Cogswell, and J. M. Lee, “p53 regulates a G2 checkpoint through cyclin B1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2147–2152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. T. A. Chan, H. Hermeking, C. Lengauer, K. W. Kinzler, and B. Vogelstein, “14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage,” Nature, vol. 401, no. 6753, pp. 616–620, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. X. W. Wang, Q. M. Zhan, J. D. Coursen et al., “GADD45 induction of a G2/M cell cycle checkpoint,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3706–3711, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. D. J. Burke, “Complexity in the spindle checkpoint,” Current Opinion in Genetics and Development, vol. 10, no. 1, pp. 26–31, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. G. J. Gorbsky, “The mitotic spindle checkpoint,” Current Biology, vol. 11, no. 24, pp. R1001–R1004, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. S. H. Khan and G. M. Wahl, “p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest,” Cancer Research, vol. 58, no. 3, pp. 396–401, 1998. View at Scopus
  92. Z. A. Stewart, S. D. Leach, and J. A. Pietenpol, “p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption,” Molecular and Cellular Biology, vol. 19, no. 1, pp. 205–215, 1999. View at Scopus
  93. J. S. Lanni and T. Jacks, “Characterization of the p53-dependent postmitotic checkpoint following spindle disruption,” Molecular and Cellular Biology, vol. 18, no. 2, pp. 1055–1064, 1998. View at Scopus
  94. M. G. Paggi, A. Baldi, F. Bonetto, and A. Giordano, “The retinoblastoma protein family incell cycle and cancer,” Journal of Cellular Biochemistry, vol. 62, no. 3, pp. 418–430, 1996.
  95. M. E. Ewen, Y. Xing, J. B. Lawrence, and D. M. Livingston, “Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein,” Cell, vol. 66, no. 6, pp. 1155–1164, 1991. View at Scopus
  96. X. Mayol, X. Grana, A. Baldi, N. Sang, Q. Hu, and A. Giordano, “Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain,” Oncogene, vol. 8, no. 9, pp. 2561–2566, 1993. View at Scopus
  97. E. W. Lam and N. B. La Thangue, “DP and E2F proteins: coordinating transcription with cell cycle progression,” Current Opinion in Cell Biology, vol. 6, no. 6, pp. 859–866, 1994. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Zhu, S. Van den Heuvel, K. Helin et al., “Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein,” Genes and Development, vol. 7, no. 7, pp. 1111–1125, 1993. View at Scopus
  99. P. P. Claudio, C. M. Howard, A. Baldi et al., “p130/pRb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRb and p107,” Cancer Research, vol. 54, no. 21, pp. 5556–5560, 1994. View at Scopus
  100. D. Cobrinik, P. Whyte, D. S. Peeper, T. Jacks, and R. A. Weinberg, “Cell cycle-specific association of E2F with the p130 E1A-binding protein,” Genes and Development, vol. 7, no. 12 A, pp. 2392–2404, 1993. View at Scopus
  101. E. M. Hijmans, P. M. Voorhoeve, R. L. Beijersbergen, L. J. Van't Veer, and R. Bernards, “E2F-5, a new E2F family member that interacts with p130 in vivo,” Molecular and Cellular Biology, vol. 15, no. 6, pp. 3082–3089, 1995. View at Scopus
  102. G. Vairo, D. M. Livingston, and D. Ginsberg, “Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members,” Genes and Development, vol. 9, no. 7, pp. 869–881, 1995. View at Scopus
  103. H. Jiang, J. Lin, S. M. Young et al., “Cell cycle gene expression and E2F transcription factor complexes in human melanoma cells induced to terminally differentiate,” Oncogene, vol. 11, no. 6, pp. 1179–1189, 1995. View at Scopus
  104. S. Shirodkar, M. Ewen, J. A. DeCaprio, J. Morgan, D. M. Livingston, and T. Chittenden, “The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner,” Cell, vol. 68, no. 1, pp. 157–166, 1992. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Cordon-Cardo, “Mutation of cell cycle regulators: biological and clinical implications for human neoplasia,” The American Journal of Pathology, vol. 147, no. 3, pp. 545–560, 1995. View at Scopus
  106. J. Yokota, T. Akiyama, Y. K. T. Fung et al., “Altered expression of the retinoblastoma (RB) gene in small-cell carcinoma of the lung,” Oncogene, vol. 3, no. 4, pp. 471–475, 1988. View at Scopus
  107. J. W. Harbour, S. L. Lai, J. Whang-Peng, A. F. Gazdar, J. D. Minna, and F. J. Kaye, “Abnormalities in structure and expression of the human retinoblastoma gene in SCLC,” Science, vol. 241, no. 4863, pp. 353–357, 1988. View at Scopus
  108. H. J. Xu, S. X. Hu, P. T. Cagle, G. E. Moore, and W. F. Benedict, “Absence of retinoblastoma protein expression in primary non-small cell lung carcinomas,” Cancer Research, vol. 51, no. 10, pp. 2735–2739, 1991. View at Scopus
  109. H. J. Xu, D. C. Quinlan, A. G. Davidson et al., “Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma,” Journal of the National Cancer Institute, vol. 86, no. 9, pp. 695–699, 1994. View at Scopus
  110. R. Salgia and A. T. Skarin, “Molecular abnormalities in lung cancer,” Journal of Clinical Oncology, vol. 16, no. 3, pp. 1207–1217, 1998. View at Scopus
  111. V. Gouyer, S. Gazzéri, I. Bolon, C. Drevet, C. Brambilla, and E. Brambilla, “Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors,” The American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 2, pp. 188–196, 1998. View at Scopus
  112. K. Helin, K. Holm, A. Niebuhr et al., “Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6933–6938, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. H. Tanaka, Y. Fujii, H. Hirabayashi et al., “Disruption of the RB pathway and cell-proliferative activity in non-small-cell lung cancers,” International Journal of Cancer, vol. 79, no. 2, pp. 111–115, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Kashiwabara, T. Oyama, T. Sano, T. Fukuda, and T. Nakajima, “Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers,” International Journal of Cancer, vol. 79, no. 3, pp. 215–220, 1998. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Gazzeri, V. Gouyer, C. Vour'ch, C. Brambilla, and E. Brambilla, “Mechanisms of p16(INK4A) inactivation in non small-cell lung cancers,” Oncogene, vol. 16, no. 4, pp. 497–504, 1998. View at Scopus
  116. H. Kawana, J. I. Tamaru, T. Tanaka et al., “Role of p27(Kip1) and cyclin-dependent kinase 2 in the proliferation of non-small cell lung cancer,” The American Journal of Pathology, vol. 153, no. 2, pp. 505–513, 1998. View at Scopus
  117. Y. Yatabe, A. Masuda, T. Koshikawa et al., “p27(KIP1) in human lung cancers: differential changes in small cell and non-small cell carcinomas,” Cancer Research, vol. 58, no. 5, pp. 1042–1047, 1998. View at Scopus
  118. A. Marchetti, C. Doglioni, M. Barbareschi et al., “Cyclin D1 and retinoblastoma susceptibility gene alterations in non-small cell lung cancer,” International Journal of Cancer, vol. 75, no. 2, pp. 187–192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  119. G. I. Shapiro, C. D. Edwards, M. E. Ewen, and B. J. Rollins, “p16(INK4a) participates in a G1 arrest checkpoint in response to DNA damage,” Molecular and Cellular Biology, vol. 18, no. 1, pp. 378–387, 1998. View at Scopus
  120. B. Driscoll, L. Wu, S. Buckley, F. L. Hall, K. D. Anderson, and D. Warburton, “Cyclin D1 antisense RNA destabilizes pRb and retards lung cancer cell growth,” The American Journal of Physiology, vol. 273, no. 5, pp. L941–L949, 1997. View at Scopus
  121. M. Higashiyama, O. Doi, K. Kodama, H. Yokouchi, and R. Tateishi, “Retinoblastoma protein expression in lung cancer: an immunohistochemical analysis,” Oncology, vol. 51, no. 6, pp. 544–551, 1994. View at Scopus
  122. A. Baldi, V. Esposito, A. De Luca et al., “Differential expression of the retinoblastoma gene family members pRb/p105, p107, and pRb2/p130 in lung cancer,” Clinical Cancer Research, vol. 2, no. 7, pp. 1239–1245, 1996. View at Scopus
  123. M. L. Agarwal, W. R. Taylor, M. V. Chernov, O. B. Chernova, and G. R. Stark, “The p53 network,” Journal of Biological Chemistry, vol. 273, no. 1, pp. 1–4, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. C. A. Jost, M. C. Marin, and W. G. Kaelin Jr., “p73 is a human p53-related protein that can induce apoptosis,” Nature, vol. 389, no. 6647, pp. 191–194, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. M. Mai, A. Yokomizo, C. Qian et al., “Activation of p73 silent allele in lung cancer,” Cancer Research, vol. 58, no. 11, pp. 2347–2349, 1998. View at Scopus
  126. S. Nomoto, N. Haruki, M. Kondo et al., “Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers,” Cancer Research, vol. 58, no. 7, pp. 1380–1383, 1998. View at Scopus
  127. V. Esposito, A. Baldi, B. Vincenzi et al., “Analysis of cell cycle regulator proteins in non-small cell lung cancer,” Journal of Clinical Pathology, vol. 57, no. 1, pp. 58–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Mitsudomi, N. Hamajima, M. Ogawa, and T. Takahashi, “Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis,” Clinical Cancer Research, vol. 6, no. 10, pp. 4055–4063, 2000. View at Scopus
  129. T. Shoji, F. Tanaka, T. Takata et al., “Clinical significance of p21 expression in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 20, no. 18, pp. 3865–3871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. X. Zhou, G. A. Niehans, A. Shar, J. B. Rubins, S. P. Frizelle, and R. A. Kratzke, “Mechanisms of G1 checkpoint loss in resected early stage non-small cell lung cancer,” Lung Cancer, vol. 32, no. 1, pp. 27–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. F. J. Kaye, “Rb and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer,” Oncogene, vol. 21, no. 45, pp. 6908–6914, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. A. M. Groeger, M. Caputi, V. Esposito et al., “Independent prognostic role of p16 expression in lung cancer,” Journal of Thoracic and Cardiovascular Surgery, vol. 118, no. 3, pp. 529–535, 1999. View at Publisher · View at Google Scholar
  133. D. S. Franklin, V. L. Godfrey, D. A. O'Brien, C. Deng, and Y. Xiong, “Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity,” Molecular and Cellular Biology, vol. 20, no. 16, pp. 6147–6158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Mitra, C. Y. Dai, K. Somasundaram et al., “Induction of p21 and inhibition of cdk2 mediated by the tumor suppressor p16,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3916–3928, 1999. View at Scopus
  135. D. Parry, D. Mahony, K. Wills, and E. Lees, “Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 1775–1783, 1999. View at Scopus
  136. V. Esposito, A. Baldi, A. De Luca et al., “Cell cycle related proteins as prognostic parameters in radically resected non small cell lung cancer (NSCLC),” Journal of Clinical Pathology, vol. 58, no. 7, pp. 734–739, 2005. View at Publisher · View at Google Scholar · View at PubMed
  137. F. J. Kaye, “RB and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer,” Oncogene, vol. 21, no. 45, pp. 6908–6914, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. V. Esposito, A. De Luca, A. Baldi et al., “Altered expression of p53 and Rb tumor suppressor genes in lung cancer: Relationship with survival,” International Journal of Oncology, vol. 9, no. 3, pp. 439–443, 1996.
  139. A. De Luca, V. Esposito, A. Baldi, and A. Giordano, “The retinoblastoma gene family and its role in proliferation, differentiation and development,” Histology and Histopathology, vol. 11, no. 4, pp. 1029–1034, 1996.
  140. J. Geradts, K. M. Fong, P. V. Zimmerman, R. Maynard, and J. D. Minna, “Correlation of abnormal RB, p16(ink4a), and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers,” Clinical Cancer Research, vol. 5, no. 4, pp. 791–800, 1999. View at Scopus
  141. T. Yoshida, S. Tanaka, A. Mogi, Y. Shitara, and H. Kuwano, “The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer,” Annals of Oncology, vol. 15, no. 2, pp. 252–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. G. Wolf, R. Elez, A. Doermer et al., “Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer,” Oncogene, vol. 14, no. 5, pp. 543–549, 1997. View at Scopus
  143. H. T. Xu, L. Ma, F. J. Qi et al., “Expression of serine threonine kinase 15 is associated with poor differentiation in lung squamous cell carcinoma and adenocarcinoma,” Pathology International, vol. 56, no. 7, pp. 375–380, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. C. K. Jung, J. H. Jung, G. S. Park, A. Lee, C. S. Kang, and K. Y. Lee, “Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer,” Pathology International, vol. 56, no. 9, pp. 503–509, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. G. Mariatos, J. Bothos, P. Zacharatos et al., “Inactivating mutations targeting the chfr mitotic checkpoint gene in human lung cancer,” Cancer Research, vol. 63, no. 21, pp. 7185–7189, 2003. View at Scopus
  146. L. Ding, G. Getz, D. A. Wheeler et al., “Somatic mutations affect key pathways in lung adenocarcinoma,” Nature, vol. 455, no. 7216, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. P. Zhang, J. Wang, W. Gao, B. Z. Yuan, J. Rogers, and E. Reed, “CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer,” Molecular Cancer, vol. 3, article 14, 2004. View at Publisher · View at Google Scholar · View at PubMed
  148. A. Gemma, M. Seike, Y. Seike et al., “Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer,” Genes Chromosomes and Cancer, vol. 29, no. 3, pp. 213–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Nomoto, N. Haruki, T. Takahashi et al., “Search for in vivo somatic mutations in the mitotic checkpoint gene, hMAD1, in human lung cancers,” Oncogene, vol. 18, no. 50, pp. 7180–7183, 1999. View at Scopus
  150. A. Agathanggelou, W. N. Cooper, and F. Latif, “Role of the Ras-association domain family 1 tumor suppressor gene in human cancers,” Cancer Research, vol. 65, no. 9, pp. 3497–3508, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus