About this Journal Submit a Manuscript Table of Contents
Pain Research and Treatment
Volume 2011 (2011), Article ID 507029, 10 pages
http://dx.doi.org/10.1155/2011/507029
Research Article

Glutamate Transporter GLT-1 Upregulation Attenuates Visceral Nociception and Hyperalgesia via Spinal Mechanisms Not Related to Anti-Inflammatory or Probiotic Effects

1Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
2Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
3The Research Institute at Nationwide Children's Hospital, Columbus, OH 43210, USA
4Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA

Received 16 July 2011; Accepted 12 September 2011

Academic Editor: Anna Maria Aloisi

Copyright © 2011 Y. Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. N. Sengupta, “Visceral pain: the neurophysiological mechanism,” Handbook of Experimental Pharmacology, vol. 194, pp. 31–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. R. Robinson and G. F. Gebhart, “Inside information: the unique features of visceral sensation,” Molecular Interventions, vol. 8, no. 5, pp. 242–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. D. Farmer and Q. Aziz, “Recent advances in chronic visceral pain,” Current Opinion in Supportive and Palliative Care, vol. 2, no. 2, pp. 116–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Hu, W. Li, L. Lu et al., “An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats,” Pain, vol. 148, no. 2, pp. 284–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Maeda, A. Kawamoto, Y. Yatani, H. Shirakawa, T. Nakagawa, and S. Kaneko, “Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats,” Molecular Pain, vol. 4, p. 65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Yang, K. Roman, D.-F. Chen, Z.-G. Wang, and R. L. Stephens Jr., “GLT-1 over-expression attenuates bladder nociception, and cross-organ sensitization of bladder nociception and function,” American Journal of Physiology—Renal Physiology, vol. 300, no. 6, pp. F1353–F1359, 2011. View at Publisher · View at Google Scholar
  7. B. R. Miller, J. L. Dorner, M. Shou et al., “Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse,” Neuroscience, vol. 153, no. 1, pp. 329–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Rothstein, S. Patel, M. R. Regan et al., “β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression,” Nature, vol. 433, no. 7021, pp. 73–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Vloet, “Gene therapy for chronic pain enters first human trial,” Online Source, 2008, http://www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=638.
  10. Y. Sari, A. L. Prieto, S. J. Barton, B. R. Miller, and G. V. Rebec, “Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington's disease,” Journal of Biomedical Science, vol. 17, no. 1, p. 62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. D. Foust, E. Nurre, C. L. Montgomery, A. Hernandez, C. M. Chan, and B. K. Kaspar, “Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes,” Nature Biotechnology, vol. 27, no. 1, pp. 59–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Lin, G. Tian, K. Roman et al., “Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 296, no. 1, pp. G129–G134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. K. Hylden and G. L. Wilcox, “Intrathecal morphine in mice: a new technique,” European Journal of Pharmacology, vol. 67, no. 2-3, pp. 313–316, 1980. View at Scopus
  14. Y. Yan, V. Kolachala, G. Dalmasso et al., “Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis,” PLoS ONE, vol. 4, no. 6, Article ID e6073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. W. J. Liaw, R. L. Stephens Jr., B. C. Binns et al., “Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord,” Pain, vol. 115, no. 1-2, pp. 60–70, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. V. Coutinho, M. O. Urban, and G. F. Gebhart, “The role of CNS NMDA receptors and nitric oxide in visceral hyperalgesia,” European Journal of Pharmacology, vol. 429, no. 1–3, pp. 319–325, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Zhou, D. D. Price, R. M. Caudle, and G. N. Verne, “Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis,” Pain, vol. 134, no. 1-2, pp. 9–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Li, J. A. McRoberts, H. S. Ennes et al., “Experimental colitis modulates the functional properties of NMDA receptors in dorsal root ganglia neurons,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 291, no. 2, pp. G219–G228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Allgayer, “Clinical relevance of oxygen radicals in inflammatory bowel disease—facts and fashion,” Klinische Wochenschrift, vol. 69, no. 21–23, pp. 1001–1003, 1991. View at Scopus
  20. N. Eijkelkamp, A. Kavelaars, S. Elsenbruch, M. Schedlowski, G. Holtmann, and C. J. Heijnen, “Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 4, pp. G749–G757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. F. Verdú, P. Bercik, M. Verma-Gandhu et al., “Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice,” Gut, vol. 55, no. 2, pp. 182–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. R. Ji, R. W. Gereau, M. Malcangio, and G. R. Strichartz, “MAP kinase and pain,” Brain Research Reviews, vol. 60, no. 1, pp. 135–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Hester, K. D. Foust, R. W. Kaspar, and B. K. Kaspar, “AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS,” Current Gene Therapy, vol. 9, no. 5, pp. 428–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. A. te Velde, M. I. Verstege, and D. W. Hommes, “Critical appraisal of the current practice in murine TNBS-induced colitis,” Inflammatory Bowel Diseases, vol. 12, no. 10, pp. 995–999, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. M. M. Quigley, “Therapies aimed at the gut microbiota and inflammation: antibiotics, prebiotics, probiotics, synbiotics, anti-inflammatory therapies,” Gastroenterology Clinics of North America, vol. 40, no. 1, pp. 207–222, 2011. View at Publisher · View at Google Scholar
  26. J. I. Choi, C. I. Svensson, F. J. Koehrn, A. Bhuskute, and L. S. Sorkin, “Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior,” Pain, vol. 149, no. 2, pp. 243–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. X. Tao, “Dorsal horn α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking in inflammatory pain,” Anesthesiology, vol. 112, no. 5, pp. 1259–1265, 2010. View at Publisher · View at Google Scholar · View at Scopus