About this Journal Submit a Manuscript Table of Contents
Pain Research and Treatment
Volume 2012 (2012), Article ID 256024, 6 pages
http://dx.doi.org/10.1155/2012/256024
Review Article

Sarcoidosis and Pain Caused by Small-Fiber Neuropathy

1Department of Anesthesiology, Leiden University Medical Center, P5Q, Postbus 9600, 2300 RC Leiden, The Netherlands
2Department of Neurology, Diaconessenhuis Leiden, Leiden, The Netherlands

Received 29 June 2012; Accepted 1 October 2012

Academic Editor: Jeffrey J. Borckardt

Copyright © 2012 Lara Heij et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Costabel and G. W. Hunninghake, “ATS/ERS/WASOG statement on sarcoidosis. Sarcoidosis statement committee. American thoracic society. European respiratory society. World association for sarcoidosis and other granulomatous disorders,” European Respiratory Journal, vol. 14, pp. 735–737, 1999. View at Google Scholar
  2. S. Saidha, E. S. Sotirchos, and C. Eckstein, “Etiology of sarcoidosis: does infection play a role?” Yale Journal of Biology and Medicine, vol. 85, no. 1, pp. 133–141, 2012. View at Google Scholar
  3. N. J. Sweiss, K. Patterson, R. Sawaqed et al., “Rheumatologic manifestations of sarcoidosis,” Seminars in Respiratory and Critical Care Medicine, vol. 31, no. 4, pp. 463–473, 2010. View at Google Scholar
  4. M. Bakkers, I. S. Merkies, G. Lauria et al., “Intraepidermal nerve fiber density and its application in sarcoidosis,” Neurology, vol. 73, no. 14, pp. 1142–1148, 2009. View at Google Scholar
  5. E. Hoitsma, M. Marziniak, C. G. Faber et al., “Small fibre neuropathy in sarcoidosis,” The Lancet, vol. 359, no. 9323, pp. 2085–2086, 2002. View at Google Scholar
  6. E. Hoitsma, J. P. Reulen, M. Baets De, M. Drent, F. Spaans, and C. G. Faber, “Small fiber neuropathy: a common and important clinical disorder,” Journal of the Neurological Sciences, vol. 227, no. 1, pp. 119–130, 2004. View at Google Scholar
  7. E. Hoitsma, M. Drent, E. Verstraete et al., “Abnormal warm and cold sensation thresholds suggestive of small-fibre neuropathy in sarcoidosis,” Clinical Neurophysiology, vol. 114, no. 12, pp. 2326–2333, 2003. View at Google Scholar
  8. J. Tavee and L. Zhou, “Small fiber neuropathy: a burning problem,” Cleveland Clinic Journal of Medicine, vol. 76, pp. 297–305, 2009. View at Publisher · View at Google Scholar
  9. S. Khan and L. Zhou, “Characterization of non-length-dependent small-fiber sensory neuropathy,” Muscle and Nerve, vol. 45, no. 1, pp. 86–91, 2012. View at Publisher · View at Google Scholar
  10. A. Hovaguimian and C. H. Gibbons, “Diagnosis and treatment of pain in small-fiber neuropathy,” Current Pain and Headache Reports, vol. 15, no. 3, pp. 193–200, 2011. View at Google Scholar
  11. M. Bakkers, C. G. Faber, M. Drent et al., “Pain and autonomic dysfunction in patients with sarcoidosis and small fibre neuropathy,” Journal of Neurology, vol. 257, no. 12, pp. 2086–2090, 2010. View at Google Scholar
  12. E. K. Krumova, C. Geber, A. Westermann, and C. Maier, “Neuropathic pain: is quantitative sensory testing helpful?” Current Diabetes Reports, vol. 12, no. 4, pp. 393–402, 2012. View at Publisher · View at Google Scholar
  13. R. D. Treede, J. Lorenz, and U. Baumgartner, “Clinical usefulness of laser-evoked potentials,” Neurophysiologie Clinique, vol. 33, no. 6, pp. 303–314, 2003. View at Google Scholar
  14. G. Lauria, D. R. Cornblath, O. Johansson et al., “EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy,” European Journal of Neurology, vol. 12, no. 10, pp. 747–758, 2005. View at Google Scholar
  15. G. Devigili, V. Tugnoli, P. Penza et al., “The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology,” Brain, vol. 131, no. 7, pp. 1912–1925, 2008. View at Google Scholar
  16. C. Han, J. G. Hoeijmakers, H. S. Ahn, P. Zhao, P. Shah, G. Lauria, et al., “Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability,” Neurology, vol. 78, no. 21, pp. 1635–1643, 2012. View at Google Scholar
  17. R. P. Baughman, E. E. Lower, and M. Drent, “Inhibitors of tumor necrosis factor (TNF) in sarcoidosis: who, what, and how to use them,” Sarcoidosis, Vasculitis and Diffuse Lung Diseases, vol. 25, no. 2, pp. 76–89, 2008. View at Google Scholar
  18. K. C. Gorson and A. H. Ropper, “Idiopathic distal small fiber neuropathy,” Acta Neurologica Scandinavia, vol. 92, no. 5, pp. 376–382, 1995. View at Google Scholar
  19. J. G. Parambil, J. O. Tavee, L. Zhou, K. S. Pearson, and D. A. Culver, “Efficacy of intravenous immunoglobulin for small fiber neuropathy associated with sarcoidosis,” Respiratory Medicine, vol. 105, no. 1, pp. 101–105, 2011. View at Google Scholar
  20. E. Hoitsma and C. G. Faber M, “Improvement of small fiber neuropathy in a sarcoidosis patient after treatment with infliximab,” Sarcoidosis, Vasculitis, and Diffuse Lung Diseases, vol. 23, no. 1, pp. 73–77, 2006. View at Google Scholar
  21. C. Sommer and M. Schafers, “painful mononeuropathy in C57BL/Wld mice with delayed wallarian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity,” Brain Research, vol. 784, no. 1-2, pp. 154–162, 1998. View at Google Scholar
  22. M. Schafers, C. Geis D Brors, T. L. Yaksh, and C. Sommer, “Anterograde transport of tumor necrosis factor-alpha in the intact and injured rat sciatic nerve,” The Journal of Neuroscience, vol. 22, no. 2, pp. 536–545, 2002. View at Google Scholar
  23. A. Opree and M. Kress, “Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL- 8 in the development of heat hyperalgesia: effects on heat evoked calcitonin gene-related peptide release from rat skin,” The Journal of Neuroscience, vol. 20, no. 16, pp. 6289–6293, 2000. View at Google Scholar
  24. M. Empl, S. Renaud, B. Erne et al., “TNF-alpha expression in painful and non-painful neuropathies,” Neurology, vol. 56, no. 10, pp. 1371–1377, 2001. View at Google Scholar
  25. F. Q. Cunha, S. Poole, B. B. Lorenzetti, and S. H. Ferreira, “The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia,” British Journal of Pharmacology, vol. 107, no. 3, pp. 660–664, 1992. View at Google Scholar
  26. P. Fazzi, “Pharmacotherapeutic management of pulmonary sarcoidosis,” American Journal of Respiratory and Critical Care Medicine, vol. 2, no. 4, pp. 311–320, 2003. View at Google Scholar
  27. M. Brownlee, H. Vlassara, and A. Cerami, “Nonenzymatic glycosylation and the pathogenesis of diabetic complications,” Annals of Internal Medicine, vol. 101, no. 4, pp. 527–537, 1984. View at Google Scholar
  28. M. Brines and A. Cerami, “Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response,” Journal of Internal Medicine, vol. 264, no. 5, pp. 405–432, 2008. View at Google Scholar
  29. M. Swartjes, A. Morariu, M. Niesters et al., “ARA290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain: an experimental study in rats and beta-common receptor knockout mice,” Anesthesiology, vol. 115, pp. 1084–1092, 2011. View at Google Scholar