About this Journal Submit a Manuscript Table of Contents
Pain Research and Treatment
Volume 2012 (2012), Article ID 427869, 13 pages
http://dx.doi.org/10.1155/2012/427869
Review Article

Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

Departments of Anesthesiology, Neurobiology and Anatomy, and Exercise and Sport Science, The University of Utah, Salt Lake City, UT 84132, USA

Received 27 April 2011; Accepted 8 July 2011

Academic Editor: Petra Schweinhardt

Copyright © 2012 Kathleen C. Light et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. N. Ablin, H. Cohen, and D. Buskila, “Mechanisms of disease: genetics of fibromyalgia,” Nature Clinical Practice Rheumatology, vol. 2, no. 12, pp. 671–678, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Kato, P. F. Sullivan, B. Evengård, and N. L. Pedersen, “A population-based twin study of functional somatic syndromes,” Psychological Medicine, vol. 39, no. 3, pp. 497–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Kato, P. F. Sullivan, B. Evengård, and N. L. Pedersen, “Importance of genetic influences on chronic widespread pain,” Arthritis and Rheumatism, vol. 54, no. 5, pp. 1682–1686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Glazer, H. Cohen, D. Buskila, R. P. Ebstein, L. Glotser, and L. Neumann, “Are psychological distress symptoms different in fibromyalgia patients compared to relatives with and without fibromyalgia?” Clinical and Experimental Rheumatology, vol. 27, no. 5, supplement 56, pp. S11–S15, 2009. View at Scopus
  5. K. J. Howard, T. G. Mayer, R. Neblett, Y. Perez, H. Cohen, and R. J. Gatchel, “Fibromyalgia syndrome in chronic disabling occupational musculoskeletal disorders: prevalence, risk factors, and posttreatment outcomes,” Journal of Occupational and Environmental Medicine, vol. 52, no. 12, pp. 1186–1191, 2010. View at Publisher · View at Google Scholar
  6. E. L. Sabban, “Catecholamines in stress: molecular mechanisms of gene expression,” Endocrine Regulations, vol. 41, no. 1, pp. 61–73, 2007. View at Scopus
  7. B. Börsbo, B. Gerdle, and M. Peolsson, “Impact of the interaction between self-efficacy, symptoms and catastrophising on disability, quality of life and health in with chronic pain patients,” Disability and Rehabilitation, vol. 32, no. 17, pp. 1387–1396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Wolfe, H. A. Smythe, M. B. Yunus et al., “The American College of Rheumatology 1990. Criteria for the classification of fibromyalgia. Report of the multicenter criteria committee,” Arthritis and Rheumatism, vol. 33, no. 2, pp. 160–172, 1990. View at Scopus
  9. W. C. Reeves, D. Wagner, R. Nisenbaum et al., “Chronic fatigue syndrome—a clinically empirical approach to its definition and study,” BMC Medicine, vol. 3, article 19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Aaron and D. Buchwald, “Chronic diffuse musculoskeletal pain, fibromyalgia and co-morbid unexplained clinical conditions,” Bailliere's Best Practice and Research in Clinical Rheumatology, vol. 17, no. 4, pp. 563–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Fink and A. Schröder, “One single diagnosis, bodily distress syndrome, succeeded to capture 10 diagnostic categories of functional somatic syndromes and somatoform disorders,” Journal of Psychosomatic Research, vol. 68, no. 5, pp. 415–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Wolfe, D. J. Clauw, M.-A. Fitzcharles et al., “Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR preliminary diagnostic criteria for fibromyalgia,” Journal of Rheumatology, vol. 38, no. 6, pp. 1113–1122, 2011. View at Publisher · View at Google Scholar
  13. F. Wolfe, D. J. Clauw, M.-A. Fitzcharles et al., “The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity,” Arthritis Care and Research, vol. 62, no. 5, pp. 600–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Pertovaara, “Noradrenergic pain modulation,” Progress in Neurobiology, vol. 80, no. 2, pp. 53–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Vučković, M. Tomić, R. Stepanović-Petrović, N. Ugrešić, M. Prostran, and B. Bošković, “Role of α2-adrenoceptors in the local peripheral antinociception by carbamazepine in a rat model of inflammatory mechanical hyperalgesia,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 29, no. 10, pp. 689–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Stein, J. D. Clark, U. Oh et al., “Peripheral mechanisms of pain and analgesia,” Brain Research Reviews, vol. 60, no. 1, pp. 90–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Pelegrini-da-Silva, M. C. G. Oliveira, C. A. Parada, and C. H. Tambeli, “Nerve growth factor acts with the β2-adrenoceptor to induce spontaneous nociceptive behavior during temporomandibular joint inflammatory hyperalgesia,” Life Sciences, vol. 83, no. 23-24, pp. 780–785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Rahman, R. D'Mello, and A. H. Dickenson, “Peripheral nerve injury-induced changes in spinal α2-adrenoceptor-mediated modulation of mechanically evoked dorsal horn neuronal responses,” Journal of Pain, vol. 9, no. 4, pp. 350–359, 2008. View at Publisher · View at Google Scholar
  19. N. Choucair-Jaafar, I. Yalcin, J. L. Rodeau, E. Waltisperger, M. J. Freund-Mercier, and M. Barrot, “β2-adrenoceptor agonists alleviate neuropathic allodynia in mice after chronic treatment,” British Journal of Pharmacology, vol. 158, no. 7, pp. 1683–1694, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Molliver, D. C. Immke, L. Fierro, M. Paré, F. L. Rice, and E. C. McCleskey, “ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons,” Molecular Pain, vol. 1, article 35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Yagi, H. N. Wenk, L. A. Naves, and E. W. McCleskey, “Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia,” Circulation Research, vol. 99, no. 5, pp. 501–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Y. Walder, L. A. Rasmussen, J. D. Rainier, A. R. Light, J. A. Wemmie, and K. A. Sluka, “ASIC1 and ASIC3 play different roles in the development of hyperalgesia after inflammatory muscle injury,” Journal of Pain, vol. 11, no. 3, pp. 210–218, 2010. View at Publisher · View at Google Scholar
  23. K. A. Sluka, R. Radhakrishnan, C. J. Benson et al., “ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation,” Pain, vol. 129, no. 1-2, pp. 102–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. Sluka, M. P. Price, N. M. Breese, C. L. Stucky, J. A. Wemmie, and M. J. Welsh, “Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1,” Pain, vol. 106, no. 3, pp. 229–239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. E. Kindig, S. G. Hayes, and M. P. Kaufman, “Blockade of purinergic 2 receptors attenuates the mechanoreceptor component of the exercise pressor reflex,” American Journal of Physiology, vol. 293, no. 5, pp. H2995–H3000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. G. Hayes, J. L. McCord, and M. P. Kaufman, “Role played by P2X and P2Y receptors in evoking the muscle chemoreflex,” Journal of Applied Physiology, vol. 104, no. 2, pp. 538–541, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. R. Light, R. W. Hughen, J. Zhang, J. Rainier, Z. Liu, and J. Lee, “Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1,” Journal of Neurophysiology, vol. 100, no. 3, pp. 1184–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Inoue, “The function of microglia through purinergic receptors: neuropathic pain and cytokine release,” Pharmacology and Therapeutics, vol. 109, no. 1-2, pp. 210–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Tsuda, Y. Shigemoto-Mogami, S. Koizumi et al., “P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury,” Nature, vol. 424, no. 6950, pp. 778–783, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Ulmann, J. P. Hatcher, J. P. Hughes et al., “Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain,” Journal of Neuroscience, vol. 28, no. 44, pp. 11263–11268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Ulmann, H. Hirbec, and F. Rassendren, “P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain,” EMBO Journal, vol. 29, no. 14, pp. 2290–2300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Zhang, Z. Y. Zhang, U. Fauser, and H. J. Schluesener, “Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats,” Neuroscience, vol. 152, no. 2, pp. 495–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Fujii, N. Ozaki, T. Taguchi, K. Mizumura, K. Furukawa, and Y. Sugiura, “TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness,” Pain, vol. 140, no. 2, pp. 292–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Buskila, “Genetics of chronic pain states,” Best Practice and Research in Clinical Rheumatology, vol. 21, no. 3, pp. 535–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Frank, B. Niesler, B. Bondy et al., “Mutational analysis of serotonin receptor genes: HTR3A and HTR3B in fibromyalgia patients,” Clinical Rheumatology, vol. 23, no. 4, pp. 338–344, 2004. View at Scopus
  36. B. Tander, S. Gunes, O. Boke et al., “Polymorphisms of the serotonin-2A receptor and catechol-O-methyltransferase genes: a study on fibromyalgia susceptibility,” Rheumatology International, vol. 28, no. 7, pp. 685–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Gursoy, “Absence of association of the serotonin transporter gene polymorphism with the mentally healthy subset of fibromyalgia patients,” Clinical Rheumatology, vol. 21, no. 3, pp. 194–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. B. I. Nicholl, K. L. Holliday, G. J. MacFarlane et al., “Association of HTR2A polymorphisms with chronic widespread pain and the extent of musculoskeletal pain: results from two population-based cohorts,” Arthritis and Rheumatism, vol. 63, no. 3, pp. 810–818, 2011. View at Publisher · View at Google Scholar
  39. K. L. Holliday, G. J. Macfarlane, B. I. Nicholl, F. Creed, W. Thomson, and J. McBeth, “Genetic variation in neuroendocrine genes associates with somatic symptoms in the general population: results from the EPIFUND study,” Journal of Psychosomatic Research, vol. 68, no. 5, pp. 469–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. A. Weaver, M. N. Janal, N. Aktan, J. E. Ottenweller, and B. H. Natelson, “Sex differences in plasma prolactin response to tryptophan in chronic fatigue syndrome patients with and without comorbid fibromyalgia,” Journal of Women's Health, vol. 19, no. 5, pp. 951–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. H. Lee, S. J. Choi, J. D. Ji, and G. G. Song, “Candidate gene studies of fibromyalgia: a systematic review and meta-analysis,” Rheumatology International. In press. View at Publisher · View at Google Scholar
  42. S. Gürsoy, E. Erdal, H. Herken, E. Madenci, B. Alaşehirli, and N. Erdal, “Significance of catechol-O-methyltransferase gene polymorphism in fibromyalgia syndrome,” Rheumatology International, vol. 23, no. 3, pp. 104–107, 2003. View at Scopus
  43. H. Cohen, L. Neumann, Y. Glazer, R. P. Ebstein, and D. Buskila, “The relationship between a common catechol-O-methyltransferase (COMT) polymorphism val158met and fibromyalgia,” Clinical and Experimental Rheumatology, vol. 27, no. 5, supplement 56, pp. S51–S56, 2009. View at Scopus
  44. P. H. Finan, A. J. Zautra, M. C. Davis, K. Lemery-Chalfant, J. Covault, and H. Tennen, “COMT moderates the relation of daily maladaptive coping and pain in fibromyalgia,” Pain, vol. 152, no. 2, pp. 300–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Diatchenko, G. D. Slade, A. G. Nackley et al., “Genetic basis for individual variations in pain perception and the development of a chronic pain condition,” Human Molecular Genetics, vol. 14, no. 1, pp. 135–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Andersen and F. Skorpen, “Variation in the COMT gene: implications for pain perception and pain treatment,” Pharmacogenomics, vol. 10, no. 4, pp. 669–684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. A. G. Nackley, K. S. Tan, K. Fecho, P. Flood, L. Diatchenko, and W. Maixner, “Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both β2- and β3-adrenergic receptors,” Pain, vol. 128, no. 3, pp. 199–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. G. Nackley, S. A. Shabalina, J. E. Lambert et al., “Low enzymatic activity haplotypes of the human catechol-O-methyltransferase gene: enrichment for marker SNPs,” PLoS ONE, vol. 4, no. 4, Article ID e5237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Hagen, E. Pettersen, L. J. Stovner, F. Skorpen, and J. A. Zwart, “No association between chronic musculoskeletal complaints and Val158Met polymorphism in the Catechol-O-methyltransferase gene. The HUNT study,” BMC Musculoskeletal Disorders, vol. 7, article 40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. B. I. Nicholl, K. L. Holliday, G. J. Macfarlane et al., “No evidence for a role of the catechol-O-methyltransferase pain sensitivity haplotypes in chronic widespread pain,” Annals of the Rheumatic Diseases, vol. 69, no. 11, pp. 2009–2012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Vargas-Alarcón, J. M. Fragoso, D. Cruz-Robles et al., “Association of adrenergic receptor gene polymorphisms with different fibromyalgia syndrome domains,” Arthritis and Rheumatism, vol. 60, no. 7, pp. 2169–2173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Herlyn, B. Müller-Hilke, M. Wendt, M. Hecker, T. Mittlmeier, and G. Gradl, “Frequencies of polymorphisms in cytokines, neurotransmitters and adrenergic receptors in patients with complex regional pain syndrome type i after distal radial fracture,” Clinical Journal of Pain, vol. 26, no. 3, pp. 175–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. J. Kim, M. Camilleri, P. J. Carlson et al., “Association of distinct α2 adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders,” Gut, vol. 53, no. 6, pp. 829–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Xiao, W. He, and I. J. Russell, “Genetic polymorphisms of the β2-adrenergic receptor relate to guanosine protein-coupled stimulator receptor dysfunction in fibromyalgia syndrome,” Journal of Rheumatology, vol. 38, no. 6, pp. 1095–1103, 2011. View at Publisher · View at Google Scholar
  55. K. C. Light, E. E. Bragdon, K. M. Grewen, K. A. Brownley, S. S. Girdler, and W. Maixner, “Adrenergic dysregulation and pain with and without acute beta-blockade in women with fibromyalgia and temporomandibular disorder,” Journal of Pain, vol. 10, no. 5, pp. 542–552, 2009. View at Publisher · View at Google Scholar
  56. I. E. Tchivileva, P. F. Lim, S. B. Smith et al., “Effect of catechol-O-methyltransferase polymorphism on response to propranolol therapy in chronic musculoskeletal pain: a randomized, double-blind, placebo-controlled, crossover pilot study,” Pharmacogenetics and Genomics, vol. 20, no. 4, pp. 239–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. K. Zubieta, M. M. Heitzeg, Y. R. Smith et al., “COMT val158 genotype affects μ-opioid neurotransmitter responses to a pain stressor,” Science, vol. 299, no. 5610, pp. 1240–1243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. P. B. Wood, P. Schweinhardt, E. Jaeger et al., “Fibromyalgia patients show an abnormal dopamine response to pain,” European Journal of Neuroscience, vol. 25, no. 12, pp. 3576–3582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Treister, D. Pud, R. P. Ebstein et al., “Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans,” Pain, vol. 147, no. 1–3, pp. 187–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. N. Ablin, A. Bar-Shira, M. Yaron, and A. Orr-Urtreger, “Candidate-gene approach in fibromyalgia syndrome: association analysis of the genes encoding substance P receptor, dopamine transporter and αl-antitrypsin,” Clinical and Experimental Rheumatology, vol. 27, no. 5, supplement 56, pp. S33–S38, 2009. View at Scopus
  61. M. Mochi, S. Cevoli, P. Cortelli et al., “A genetic association study of migraine with dopamine receptor 4, dopamine transporter and dopamine-beta-hydroxylase genes,” Neurological Sciences, vol. 23, no. 6, pp. 301–305, 2003. View at Publisher · View at Google Scholar
  62. D. Buskila, H. Cohen, L. Neuman, and R. P. Ebstein, “An association between fibromyalgia and the dopamine D4 receptor exon III repeat polymorphism and relationship to novelty seeking personality traits,” Molecular Psychiatry, vol. 9, no. 8, pp. 730–731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Cevoli, M. Mochi, C. Scapoli et al., “A genetic association study of dopamine metabolism-related genes and chronic headache with drug abuse,” European Journal of Neurology, vol. 13, no. 9, pp. 1009–1013, 2006. View at Publisher · View at Google Scholar
  64. R. Corominas, M. Ribases, M. Camiña et al., “Two-stage case-control association study of dopamine-related genes and migraine,” BMC Medical Genetics, vol. 10, article 95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. E. García-Martín, C. Martínez, M. Serrador et al., “Dopamine receptor 3(DRD3) polymorphism and risk for migraine,” European Journal of Neurology, vol. 17, no. 9, pp. 1220–1223, 2010. View at Publisher · View at Google Scholar
  66. U. Todt, C. Netzer, M. Toliat et al., “New genetic evidence for involvement of the dopamine system in migraine with aura,” Human Genetics, vol. 125, no. 3, pp. 265–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Tang, I. Matsuoka, T. Ono, K. Inoue, and J. Kimura, “Selective up-regulation of P2X4-receptor gene expression by interferon-γ in vascular endothelial cells,” Journal of Pharmacological Sciences, vol. 107, no. 4, pp. 419–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Yamamoto, T. Sokabe, T. Matsumoto et al., “Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice,” Nature Medicine, vol. 12, no. 1, pp. 133–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Portales-Cervantes, P. Niño-Moreno, L. Doníz-Padilla et al., “Expression and function of the P2X7 purinergic receptor in patients with systemic lupus erythematosus and rheumatoid arthritis,” Human Immunology, vol. 71, no. 8, pp. 818–825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Barden, M. Harvey, B. Gagné et al., “Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder,” American Journal of Medical Genetics B, vol. 141, no. 4, pp. 374–382, 2006. View at Publisher · View at Google Scholar
  71. S. Lucae, D. Salyakina, N. Barden et al., “P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder,” Human Molecular Genetics, vol. 15, no. 16, pp. 2438–2445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Erhardt, S. Lucae, P. G. Unschuld et al., “Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders,” Journal of Affective Disorders, vol. 101, no. 1-3, pp. 159–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Roger, Z. Z. Mei, J. M. Baldwin et al., “Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions,” Journal of Psychiatric Research, vol. 44, no. 6, pp. 347–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. W. Gow, S. Hagan, P. Herzyk, C. Cannon, P. O. Behan, and A. Chaudhuri, “A gene signature for post-infectious chronic fatigue syndrome,” BMC Medical Genomics, vol. 2, article 38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Vojdani, M. Ghoneum, P. C. Choppa, L. Magtoto, and C. W. Lapp, “Elevated apoptotic cell population in patients with chronic fatigue syndrome: the pivotal role of protein kinase RNA,” Journal of Internal Medicine, vol. 242, no. 6, pp. 465–478, 1997. View at Scopus
  76. R. Powell, J. Ren, G. Lewith, W. Barclay, S. Holgate, and J. Almond, “Identification of novel expressed sequences, up-regulated in the leucocytes of chronic fatigue syndrome patients,” Clinical and Experimental Allergy, vol. 33, no. 10, pp. 1450–1456, 2003. View at Publisher · View at Google Scholar
  77. A. Tomoda, T. Joudoi, E. M. Rabab, T. Matsumoto, T. H. Park, and T. Miike, “Cytokine production and modulation: comparison of patients with chronic fatigue syndrome and normal controls,” Psychiatry Research, vol. 134, no. 1, pp. 101–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. A. L. Aspler, C. Bolshin, S. D. Vernon, and G. Broderick, “Evidence of inflammatory immune signaling in chronic fatigue syndrome: a pilot study of gene expression in peripheral blood,” Behavioral and Brain Functions, vol. 4, article 44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. J. R. Kerr, R. Petty, B. Burke et al., “Gene expression subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis,” Journal of Infectious Diseases, vol. 197, no. 8, pp. 1171–1184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Saiki, T. Kawai, K. Morita et al., “Identification of marker genes for differential diagnosis of chronic fatigue syndrome,” Molecular Medicine, vol. 14, no. 9-10, pp. 599–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Frampton, J. Kerr, T. J. Harrison, and P. Kellam, “Assessment of a 44 gene classifier for the evaluation of chronic fatigue syndrome from peripheral blood mononuclear cell gene expression,” PLoS ONE, vol. 6, no. 3, Article ID e16872, 2011. View at Publisher · View at Google Scholar
  82. T. Whistler, J. F. Jones, E. R. Unger, and S. D. Vernon, “Exercise responsive genes measured in peripheral blood of women with Chronic Fatigue Syndrome and matched control subjects,” BMC Physiology, vol. 5, no. 1, article 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Sorensen, J. F. Jones, S. D. Vernon, and M. S. Rajeevan, “Transcriptional control of complement activation in an exercise model of chronic fatigue syndrome,” Molecular Medicine, vol. 15, no. 1-2, pp. 34–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Lin and S. Y. Hsu, “A Bayesian approach to gene-gene and gene-environment interactions in chronic fatique syndrome,” Pharmacogenomics, vol. 10, no. 1, pp. 35–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. B. N. Goertzel, C. Pennachin, L. de Souza Coelho, B. Gurbaxani, E. M. Maloney, and J. F. Jones, “Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome,” Pharmacogenomics, vol. 7, no. 3, pp. 475–483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. M. S. Rajeevan, A. K. Smith, I. Dimulescu et al., “Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome,” Genes, Brain and Behavior, vol. 6, no. 2, pp. 167–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. A. Macedo, J. Hesse, J. D. Turner, J. Meyer, D. H. Hellhammer, and C. P. Muller, “Glucocorticoid sensitivity in fibromyalgia patients: decreased expression of corticosteroid receptors and glucocorticoid-induced leucine zipper,” Psychoneuroendocrinology, vol. 33, no. 6, pp. 799–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. A. R. Light, A. T. White, R. W. Hughen, and K. C. Light, “Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects,” Journal of Pain, vol. 10, no. 10, pp. 1099–1112, 2009. View at Publisher · View at Google Scholar
  89. A. R. Light, L. Bateman, D. Jo, et al., “Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome, and Fibromylasia,” Journal of Internal Medicine. In press. View at Publisher · View at Google Scholar
  90. A. T. White, et al., “Differences in metabolite-detecting, adrenergic, and immune gene expression following moderate exercise in chronic fatigue syndrome, multiple sclerosis, and healthy contrls,” Psychosomatic Medicine. In press.
  91. F. Wolfe, H. A. Smythe, M. B. Yunus et al., “The American College of Rheumatology 1990. Criteria for the classification of fibromyalgia. Report of the Multicenter Criteria Committee,” Arthritis and Rheumatism, vol. 33, no. 2, pp. 160–172, 1990. View at Scopus
  92. A. R. Light, “What is this thing “Fatigue” anyway?” Journal of Applied Physiology, vol. 108, no. 2, pp. 464–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. P. F. Sullivan, C. Fan, and C. M. Perou, “Evaluating the comparability of gene expression in blood and brain,” American Journal of Medical Genetics B, vol. 141, no. 3, pp. 261–268, 2006. View at Publisher · View at Google Scholar
  94. I. Tegeder, M. Costigan, R. S. Griffin et al., “GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence,” Nature Medicine, vol. 12, no. 11, pp. 1269–1277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. Z. Zhou, G. Zhu, A. R. Hariri et al., “Genetic variation in human NPY expression affects stress response and emotion,” Nature, vol. 452, no. 7190, pp. 997–1001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. G. M. Goodwin, “Depression and associated physical diseases and symptoms,” Dialogues in Clinical Neuroscience, vol. 8, no. 2, pp. 259–265, 2006. View at Scopus
  97. R. Lieb, G. Meinlschmidt, and R. Araya, “Epidemiology of the association between somatoform disorders and anxiety and depressive disorders: an update,” Psychosomatic Medicine, vol. 69, no. 9, pp. 860–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Salemi, A. Aeschlimann, U. Wollina et al., “Up-regulation of δ-opioid receptors and κ-opioid receptors in the skin of fibromyalgia patients,” Arthritis and Rheumatism, vol. 56, no. 7, pp. 2464–2466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. M. W. Coryell, A. M. Wunsch, J. M. Haenfler et al., “Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior,” Journal of Neuroscience, vol. 29, no. 17, pp. 5381–5388, 2009. View at Publisher · View at Google Scholar · View at Scopus