About this Journal Submit a Manuscript Table of Contents
Pain Research and Treatment
Volume 2012 (2012), Article ID 951354, 12 pages
http://dx.doi.org/10.1155/2012/951354
Review Article

A Mechanism-Based Approach to Prevention of and Therapy for Fibromyalgia

Department of Neuroscience and Comprehensive Center for Pain Research, Colleges of Medicine and Dentistry, University of Florida, P.O. Box 100444, 1600 S.W. Archer Road, Gainesville, FL 32610, USA

Received 15 May 2011; Accepted 6 July 2011

Academic Editor: Petra Schweinhardt

Copyright © 2012 Charles J. Vierck. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Smith, R. Harris, and D. Clauw, “Fibromyalgia: an afferent processing disorder leading to a complex pain generalized syndrome,” Pain Physician, vol. 14, no. 2, pp. E217–E245, 2011.
  2. B. Gerdle, K. Söderberg, L. S. Puigvert, L. Rosendal, and B. Larsson, “Increased interstitial concentrations of pyruvate and lactate in the trapezius muscle of patients with fibromyalgia: a microdialysis study,” Journal of Rehabilitation Medicine, vol. 42, no. 7, pp. 679–687, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. L. Bendtsen, J. NØrregaard, R. Jensen, and J. Olesen, “Evidence of qualitatively altered nociception in patients with fibromyalgia,” Arthritis and Rheumatism, vol. 40, no. 1, pp. 98–102, 1997. View at Publisher · View at Google Scholar
  4. H. Y. Ge, H. Nie, P. Madeleine, B. Danneskiold-Samsøe, T. Graven-Nielsen, and L. Arendt-Nielsen, “Contribution of the local and referred pain from active myofascial trigger points in fibromyalgia syndrome,” Pain, vol. 147, no. 1-3, pp. 233–240, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. H.-Y. Ge, Y. Wang, C. Fernández-de-las-Peñas, T. Graven-Nielsen, B. Danneskiold-Samsøe, and L. Arendt-Nielsen, “Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients,” Arthritis Research and Therapy, vol. 13, no. 2, p. R48, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. E. Kosek, J. Ekholm, and P. Hansson, “Increased pressure pain sensibility in fibromyalgia patients is located deep to the skin but not restricted to muscle tissue,” Pain, vol. 63, no. 3, pp. 335–339, 1995. View at Publisher · View at Google Scholar
  7. M. Mikkelsson, P. Latikka, H. Kautiainen, R. Isomeri, and H. Isomaki, “Muscle and bone pressure pain threshold and pain tolerance in fibromyalgia patients and controls,” Archives of Physical Medicine and Rehabilitation, vol. 73, no. 9, pp. 814–818, 1992.
  8. R. Staud, R. C. Cannon, A. P. Mauderli, M. E. Robinson, D. D. Price, and C. J. Vierck, “Temporal summation of pain from mechanical stimulation of muscle tissue in normal controls and subjects with fibromyalgia syndrome,” Pain, vol. 102, no. 1-2, pp. 87–95, 2003. View at Publisher · View at Google Scholar
  9. K. C. Light, E. E. Bragdon, K. M. Grewen, K. A. Brownley, S. S. Girdler, and W. Maixner, “Adrenergic dysregulation and pain with and without acute beta-blockade in women with fibromyalgia and temporomandibular disorder,” The Journal of Pain, vol. 10, no. 5, pp. 542–552, 2009. View at Publisher · View at Google Scholar · View at PubMed
  10. C. J. Vierck, “Mechanisms underlying development of spatially distributed chronic pain (fibromyalgia),” Pain, vol. 124, no. 3, pp. 242–263, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. G. K. Adler and R. Geenen, “Hypothalamic-pituitary-adrenal and autonomic nervous system functioning in fibromyalgia,” Rheumatic Disease Clinics of North America, vol. 31, no. 1, pp. 187–202, 2005. View at Publisher · View at Google Scholar · View at PubMed
  12. K. I. Cho, J. H. Lee, H. G. Lee, S. M. Kim, and T. I. Kim, “Assessment of myocardial function in patients with fibromyalgia and the relationship to chronic emotional and physical stress,” Korean Circulation Journal, vol. 40, no. 2, pp. 74–80, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. M. T. Dogru, G. Aydin, A. Tosun et al., “Correlations between autonomic dysfunction and circadian changes and arrhythmia prevalence in women with fibromyalgia syndrome,” Anadolu Kardiyoloji Dergisi, vol. 9, no. 2, pp. 110–117, 2009.
  14. R. Furlan, S. Colombo, F. Perego et al., “Abnormalities of cardiovascular neural control and reduced orthostatic tolerance in patients with primary fibromyalgia,” Journal of Rheumatology, vol. 32, no. 9, pp. 1787–1793, 2005.
  15. M. Martinez-Lavin, “Biology and therapy of fibromyalgia. Stress, the stress response system, and fibromyalgia,” Arthritis Research and Therapy, vol. 9, no. 4, article 216, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. G. A. Reyes del Paso, S. Garrido, Á. Pulgar, and S. Duschek, “Autonomic cardiovascular control and responses to experimental pain stimulation in fibromyalgia syndrome,” Journal of Psychosomatic Research, vol. 70, no. 2, pp. 125–134, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. K. A. Brownley, A. L. Hinderliter, S. G. West, S. S. Girdler, A. Sherwood, and K. C. Light, “Sympathoadrenergic mechanisms in reduced hemodynamic stress responses after exercise,” Medicine and Science in Sports and Exercise, vol. 35, no. 6, pp. 978–986, 2003. View at Publisher · View at Google Scholar · View at PubMed
  18. J. C. Klein, C. G. Crandall, R. M. Brothers, and J. R. Carter, “Combined heat and mental stress alters neurovascular control in humans,” Journal of Applied Physiology, vol. 109, no. 6, pp. 1880–1886, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. S. Roatta, M. Mohammed, and M. Passatore, “Detecting activation of the sympatho-adrenal axis from haemodynamic recordings, in conscious rabbits exposed to acute stress,” Acta Physiologica, vol. 201, no. 3, pp. 323–337, 2011. View at Publisher · View at Google Scholar · View at PubMed
  20. L. Ghiadoni, A. E. Donald, M. Cropley et al., “Mental stress induces transient endothelial dysfunction in humans,” Circulation, vol. 102, no. 20, pp. 2473–2478, 2000.
  21. L. E. Spieker, D. Hürlimann, F. Ruschitzka et al., “Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors,” Circulation, vol. 105, no. 24, pp. 2817–2820, 2002. View at Publisher · View at Google Scholar
  22. Y. J. Chen, F. Huang, M. Zhang, and H. Y. Shang, “Psychological stress alters ultrastructure and energy metabolism of masticatory muscle in rats,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 302693, 9 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. L. Bowyer, M. A. Brown, and M. Jones, “Vascular reactivity in men and women of reproductive age,” American Journal of Obstetrics and Gynecology, vol. 185, no. 1, pp. 88–96, 2001. View at Publisher · View at Google Scholar · View at PubMed
  24. V. A. Converting, “Gender differences in autonomic functions associated with blood pressure regulation,” American Journal of Physiology, vol. 275, no. 6, pp. R1909–R1920, 1998.
  25. J. P. Cooke, M. A. Craeger, P. J. Osmundson, and J. T. Shepherd, “Sex differences in control of cutaneous blood flow,” Circulation, vol. 82, no. 5, pp. 1607–1615, 1990.
  26. J. M. Evans, M. G. Ziegler, A. R. Patwardhan et al., “Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes,” Journal of Applied Physiology, vol. 91, no. 6, pp. 2611–2618, 2001.
  27. D. L. Kellogg, Y. Liu, and P. E. Pérgola, “Genome and hormones: gender differences in physiology selected contribution: gender differences in the endothelin-B receptor contribution to basal cutaneous vascular tone in humans,” Journal of Applied Physiology, vol. 91, no. 5, pp. 2407–2411, 2001.
  28. H. Kim, C. Richardson, J. Roberts, L. Gren, and J. L. Lyon, “Cold hands, warm heart,” The Lancet, vol. 351, no. 9114, p. 1492, 1998. View at Publisher · View at Google Scholar
  29. I. Marchand, D. Johnson, D. Montgomery, G. R. Brisson, and H. Perrault, “Gender differences in temperature and vascular characteristics during exercise recovery,” Canadian Journal of Applied Physiology, vol. 26, no. 5, pp. 425–441, 2001.
  30. J. P. Cooke, S. J. Creager, K. M. Scales et al., “Role of digital artery adrenoceptors in Raynaud's disease,” Vascular Medicine, vol. 2, no. 1, pp. 1–7, 1997.
  31. J. P. Cooke and J. M. Marshall, “Mechanisms of Raynaud's disease,” Vascular Medicine, vol. 10, no. 4, pp. 293–307, 2005. View at Publisher · View at Google Scholar
  32. R. K. Oka, A. Szuba, J. C. Giacomini, and J. P. Cooke, “Gender differences in perception of PAD: a pilot study,” Vascular Medicine, vol. 8, no. 2, pp. 89–94, 2003. View at Publisher · View at Google Scholar
  33. A. H. Sadrzadeh Rafie, M. L. Stefanick, S. T. Sims et al., “Sex differences in the prevalence of peripheral artery disease in patients undergoing coronary catheterization,” Vascular Medicine, vol. 15, no. 6, pp. 443–450, 2010. View at Publisher · View at Google Scholar · View at PubMed
  34. J. P. Fisher and P. J. Fadel, “Therapeutic strategies for targeting excessive central sympathetic activation in human hypertension,” Experimental Physiology, vol. 95, no. 5, pp. 572–580, 2010. View at Publisher · View at Google Scholar · View at PubMed
  35. A. Rozanski, J. A. Blumenthal, and J. Kaplan, “Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy,” Circulation, vol. 99, no. 16, pp. 2192–2217, 1999.
  36. J. Fagius, S. Karhuvaara, and G. Sundlof, “The cold pressor test: effects on sympathetic nerve activity in human muscle and skin nerve fascicles,” Acta Physiologica Scandinavica, vol. 137, no. 3, pp. 325–334, 1989.
  37. Q. Zhou, R. B. Fillingim, J. L. Riley, and G. N. Verne, “Ischemic hypersensitivity in irritable bowel syndrome patients,” Pain Medicine, vol. 11, no. 11, pp. 1619–1627, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. W. T. Birdsong, L. Fierro, F. G. Williams et al., “Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels,” Neuron, vol. 68, no. 4, pp. 739–749, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. X. Chen, P. G. Green, and J. D. Levine, “Stress enhances muscle nociceptor activity in the rat,” Neuroscience, vol. 185, pp. 166–173, 2011. View at Publisher · View at Google Scholar · View at PubMed
  40. W. Magerl, G. Geldner, and H. O. Handwerker, “Pain and vascular reflexes in man elicited by prolonged noxious mechano-stimulation,” Pain, vol. 43, no. 2, pp. 219–225, 1990. View at Publisher · View at Google Scholar
  41. M. Nordin and J. Fagius, “Effect of noxious stimulation on sympathetic vasoconstrictor outflow to human muscles,” Journal of Physiology, vol. 489, no. 3, pp. 885–894, 1995.
  42. R. Staud, M. E. Robinson, and D. D. Price, “Temporal summation of second pain and its maintenance are useful for characterizing widespread central sensitization of fibromyalgia patients,” The Journal of Pain, vol. 8, no. 11, pp. 893–901, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. R. Staud, C. J. Vierck, R. L. Cannon, A. P. Mauderli, and D. D. Price, “Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome,” Pain, vol. 91, no. 1-2, pp. 165–175, 2001. View at Publisher · View at Google Scholar
  44. D. D. Price, Q. Zhou, B. Moshiree, M. E. Robinson, and G. N. Verne, “Peripheral and central contributions to hyperalgesia in irritable bowel syndrome,” The Journal of Pain, vol. 7, no. 8, pp. 529–535, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. E. E. Ayesh, T. S. Jensen, and P. Svensson, “Hypersensitivity to mechanical and intra-articular electrical stimuli in persons with painful temporomandibular joints,” Journal of Dental Research, vol. 86, no. 12, pp. 1187–1192, 2007. View at Publisher · View at Google Scholar
  46. M. Bouin, P. Meunier, M. Riberdy-Poitras, and P. Poitras, “Pain hypersensitivity in patients with functional gastrointestinal disorders: a gastrointestinal-specific defect or a general systemic condition?” Digestive Diseases and Sciences, vol. 46, article 216, p. 7, 2007. View at Publisher · View at Google Scholar
  47. C. Fernández-de-las-Peñas, F. Galán-del-Río, J. Fernández-Carnero, J. Pesquera, L. Arendt-Nielsen, and P. Svensson, “Bilateral widespread mechanical pain sensitivity in women with myofascial temporomandibular disorder: evidence of impairment in central nociceptive processing,” The Journal of Pain, vol. 10, no. 11, pp. 1170–1178, 2009. View at Publisher · View at Google Scholar · View at PubMed
  48. C. Fernández-de-las-Peñas, R. Ortega-Santiago, M. L. Cuadrado, C. López-de-Silanes, and J. A. Pareja, “Bilateral widespread mechanical pain hypersensitivity as sign of central sensitization in patients with cluster headache,” Headache, vol. 51, no. 3, pp. 384–391, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. C. Fernández-Lao, I. Cantarero-Villanueva, C. Fernández-de-Las-Peñas, R. del-Moral-Ávila, S. Menjón-Beltrán, and M. Arroyo-Morales, “Widespread mechanical pain hypersensitivity as a sign of central sensitization after breast cancer surgery: comparison between mastectomy and lumpectomy,” Pain Medicine, vol. 12, no. 1, pp. 72–78, 2011. View at Publisher · View at Google Scholar · View at PubMed
  50. L. L. Kindler, K. D. Jones, N. Perrin, and R. M. Bennett, “Risk factors predicting the development of widespread pain from chronic back or neck pain,” The Journal of Pain, vol. 11, no. 12, pp. 1320–1328, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. R. B. Leistad, T. Sand, R. H. Westgaard, K. B. Nilsen, and L. J. Stovner, “Stress-induced pain and muscle activity in patients with migraine and tension-type headache,” Cephalalgia, vol. 26, no. 1, pp. 64–73, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. W. Maixner, R. Fillingim, A. Sigurdsson, Shelley Kincaid, and S. Silva, “Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain: evidence for altered temporal summation of pain,” Pain, vol. 76, no. 1-2, pp. 71–81, 1998. View at Publisher · View at Google Scholar
  53. M. Piché, M. Arsenault, P. Poitras, P. Rainville, and M. Bouin, “Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome,” Pain, vol. 148, no. 1, pp. 49–58, 2010. View at Publisher · View at Google Scholar · View at PubMed
  54. A. C. Rodrigues, G. N. Verne, S. Schmidt, and A. P. Mauderli, “Hypersensitivity to cutaneous thermal nociceptive stimuli in irritable bowel syndrome,” Pain, vol. 115, no. 1-2, pp. 5–11, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. E. Sarlani and J. D. Greenspan, “Evidence for generalized hyperalgesia in temporomandibular disorders patients,” Pain, vol. 102, no. 3, pp. 221–226, 2003. View at Publisher · View at Google Scholar
  56. P. Svensson, T. List, and G. Hector, “Analysis of stimulus-evoked pain in patients with myofascial temporomandibular pain disorders,” Pain, vol. 92, no. 3, pp. 399–409, 2001. View at Publisher · View at Google Scholar
  57. C. H. Wilder-Smith and J. Robert-Yap, “Abnormal endogenous pain modulation and somatic and visceral hypersensitivity in female patients with irritable bowel syndrome,” World Journal of Gastroenterology, vol. 13, no. 27, pp. 3699–3704, 2007.
  58. Q. Zhou, R. B. Fillingim, J. L. Riley, W. B. Malarkey, and G. N. Verne, “Central and peripheral hypersensitivity in the irritable bowel syndrome,” Pain, vol. 148, no. 3, pp. 454–461, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. Q. Q. Zhou, R. B. Fillingim, J. L. Riley, and G. N. Verne, “Thermal hypersensitivity in a subset of irritable bowel syndrome patients,” World Journal of Gastroenterology, vol. 15, no. 26, pp. 3254–3260, 2009. View at Publisher · View at Google Scholar
  60. J. N. Ablin, H. Cohen, D. J. Clauw et al., “A tale of two cities—the effect of low intensity conflict on prevalence and characteristics of musculoskeletal pain and somatic symptoms associated with chronic stress,” Clinical and Experimental Rheumatology, vol. 28, no. 6, supplement 63, pp. S15–S21, 2010.
  61. S. Bruehl, J. W. Burns, and J. A. McCubbin, “Altered cardiovascular/pain regulatory relationships in chronic pain,” International Journal of Behavioral Medicine, vol. 5, no. 1, pp. 63–75, 1998. View at Publisher · View at Google Scholar
  62. C. R. Chapman, R. P. Tuckett, and C. W. Song, “Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions,” The Journal of Pain, vol. 9, no. 2, pp. 122–145, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. D. M. Hallman, L. G. Lindberg, B. B. Arnetz, and E. Lyskov, “Effects of static contraction and cold stimulation on cardiovascular autonomic indices, trapezius blood flow and muscle activity in chronic neck-shoulder pain,” European Journal of Applied Physiology, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at PubMed
  64. A. C. Johansson, L. G. Gunnarsson, S. J. Linton et al., “Pain, disability and coping reflected in the diurnal cortisol variability in patients scheduled for lumbar disc surgery,” European Journal of Pain, vol. 12, no. 5, pp. 633–640, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. J. Jones, D. N. Rutledge, K. D. Jones, L. Matallana, and D. S. Rooks, “Self-assessed physical function levels of women with fibromyalgia: a national survey,” Women's Health Issues, vol. 18, no. 5, pp. 406–412, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. J. McBeth, A. J. Silman, A. Gupta et al., “Moderation of psychosocial risk factors through dysfunction of the hypothalamic-pituitary-adrenal stress axis in the onset of chronic widespread musculoskeletal pain: findings of a population-based prospective cohort study,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 360–371, 2007. View at Publisher · View at Google Scholar · View at PubMed
  67. K. G. Raphael and C. S. Widom, “Post-traumatic stress disorder moderates the relation between documented childhood victimization and pain 30 years later,” Pain, vol. 152, no. 1, pp. 163–169, 2011. View at Publisher · View at Google Scholar · View at PubMed
  68. E. J. Videlock, M. Adeyemo, A. Licudine et al., “Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome,” Gastroenterology, vol. 137, no. 6, pp. 1954–1962, 2009. View at Publisher · View at Google Scholar · View at PubMed
  69. W. Grassi, P. Core, G. Carlino, F. Salaffi, and C. Cervini, “Capillary permeability in fibromyalgia,” Journal of Rheumatology, vol. 21, no. 7, pp. 1328–1331, 1994.
  70. M. Jeschonneck, G. Grohmann, G. Hein, and H. Sprott, “Abnormal microcirculation and temperature in skin above tender points in patients with fibromyalgia,” Rheumatology, vol. 39, no. 8, pp. 917–921, 2000.
  71. D. L. Katz, L. Greene, A. Ali, and Z. Faridi, “The pain of fibromyalgia syndrome is due to muscle hypoperfusion induced by regional vasomotor dysregulation,” Medical Hypotheses, vol. 69, no. 3, pp. 517–525, 2007. View at Publisher · View at Google Scholar · View at PubMed
  72. N. Lund, A. Bengtsson, and P. Thorborg, “Muscle tissue oxygen pressure in primary fibromyalgia,” Scandinavian Journal of Rheumatology, vol. 15, no. 2, pp. 165–173, 1986.
  73. S. Morf, B. Amann-Vesti, A. Forster et al., “Microcirculation abnormalities in patients with fibromyalgia—measured by capillary microscopy and laser fluxmetry,” Arthritis Research & Therapy, vol. 7, no. 2, pp. R209–R216, 2005.
  74. A. Elvin, A. K. Siösteen, A. Nilsson, and E. Kosek, “Decreased muscle blood flow in fibromyalgia patients during standardised muscle exercise: a contrast media enhanced colour doppler study,” European Journal of Pain, vol. 10, no. 2, pp. 137–144, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. A. R. Light, A. T. White, R. W. Hughen, and K. C. Light, “Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects,” The Journal of Pain, vol. 10, no. 10, pp. 1099–1112, 2009. View at Publisher · View at Google Scholar · View at PubMed
  76. J. Elert, S. Aspegren Kendall, B. Larsson, B. Månsson, and B. Gerdle, “Chronic pain and difficulty in relaxing postural muscles in patients with fibromyalgia and chronic whiplash associated disorders,” Journal of Rheumatology, vol. 28, no. 6, pp. 1361–1368, 2001.
  77. D. Kadetoff and E. Kosek, “Evidence of reduced sympatho-adrenal and hypothalamic-pituitary activity during static muscular work in patients with fibromyalgia,” Journal of Rehabilitation Medicine, vol. 42, no. 8, pp. 765–772, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. C. A. Griffis, P. Compton, and L. Doering, “The effect of pain on leukocyte cellular adhesion molecules,” Biological Research for Nursing, vol. 7, no. 4, pp. 297–312, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. P. E. Molina, “Neurobiology of the stress response: contribution of the sympathetic nervous system to the neuroimmune axis in traumatic injury,” Shock, vol. 24, no. 1, pp. 3–10, 2005. View at Publisher · View at Google Scholar
  80. E. Ortega, J. J. García, M. E. Bote et al., “Exercise in fibromyalgia and related inflammatory disorders: known effects and unknown chances,” Exercise Immunology Review, vol. 15, pp. 42–65, 2009.
  81. R. L. Ross, K. D. Jones, R. M. Bennett, R. L. Ward, B. J. Druker, and L. J. Wood, “Preliminary evidence of increased pain and elevated cytokines in fibromyalgia patients with defective growth hormone response to exercise,” The Open Immunology Journal, vol. 3, pp. 9–18, 2010.
  82. D. J. Wallace, M. Linker-Israeli, D. Hallegua, S. Silverman, D. Silver, and M. H. Weisman, “Cytokines play an aetiopathogenetic role in fibromyalgia: a hypothesis and pilot study,” Rheumatology, vol. 40, no. 7, pp. 743–749, 2001.
  83. M. D. Cordero, M. de Miguel, A. M. Moreno Fernandez et al., “Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implication in the pathogenesis of the disease,” Arthritis Research & Therapy, p. R17, 2010. View at Publisher · View at Google Scholar · View at PubMed
  84. E. J. C. de Geus, L. J. P. van Doornen, D. C. de Visser, and J. F. Orlebeke, “Existing and training induced differences in aerobic fitness: their relationship to physiological response patterns during different types of stress,” Psychophysiology, vol. 27, no. 4, pp. 457–478, 1990.
  85. J. Duda, D. Sedlock, C. Melby, and C. Thaman, “The effects of physical activity level and acute exercise on heart rate and subjective response to a psychological stressor,” International Journal of Sport Psychology, vol. 19, pp. 119–133, 1988.
  86. F. Peronnet, D. Massicotte, J. E. Paquet, G. Brisson, and J. de Champlain, “Blood pressure and plasma catecholamine responses to various challenges during exercise-recovery in man,” European Journal of Applied Physiology and Occupational Physiology, vol. 58, no. 5, pp. 551–555, 1989.
  87. W. Rejeski, E. Gregg, A. Thompson, and M. Berry, “The effects of varying doses of acute aerobic exercise on psychophysiological stress responses in highly trained cyclists,” Journal of Sport & Exercise Psychology, vol. 13, pp. 188–199, 1991.
  88. M. Roy and A. Steptoe, “The inhibition of cardiovascular responses to mental stress following aerobic exercise,” Psychophysiology, vol. 28, no. 6, pp. 689–700, 1991. View at Publisher · View at Google Scholar
  89. M. C. Laterza, L. D. N. J. de Matos, I. C. Trombetta et al., “Exercise training restores baroreflex sensitivity in never-treated hypertensive patients,” Hypertension, vol. 49, no. 6, pp. 1298–1306, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. L. Nelson, G. L. Jennings, M. D. Esler, and P. I. Korner, “Effect of changing levels of physical activity on blood-pressure and haemodynamics in essential hypertension,” The Lancet, vol. 2, no. 8505, pp. 473–476, 1986.
  91. F. P. Leung, L. M. Yung, I. Laher, X. Yao, Z. Y. Chen, and Y. Huang, “Exercise, vascular wall and cardiovascular diseases: an update (part 1),” Sports Medicine, vol. 38, no. 12, pp. 1009–1024, 2008.
  92. B. Høier, K. Olsen, M. Nyberg, J. Bangsbo, and Y. Hellsten, “Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine,” American Journal of Physiology, vol. 299, no. 3, pp. H857–H862, 2010. View at Publisher · View at Google Scholar · View at PubMed
  93. J. Chinsomboon, J. Ruas, R. K. Gupta et al., “The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21401–21406, 2009. View at Publisher · View at Google Scholar · View at PubMed
  94. F. A. M. Huber-Abel, M. Gerber, H. Hoppeler, and O. Baum, “Exercise-induced angiogenesis correlates with the up-regulated expression of neuronal nitric oxide synthase (nNOS) in human skeletal muscle,” European Journal of Applied Physiology. In press. View at Publisher · View at Google Scholar · View at PubMed
  95. C. L. Dumke, J. M. Davis, E. A. Murphy et al., “Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis,” European Journal of Applied Physiology, vol. 107, no. 4, pp. 419–427, 2009. View at Publisher · View at Google Scholar · View at PubMed
  96. E. Børsheim and R. Bahr, “Effect of exercise intensity, duration and mode on post-exercise oxygen consumption,” Sports Medicine, vol. 33, no. 14, pp. 1037–1060, 2003. View at Publisher · View at Google Scholar
  97. B. R. Jensen, G. Sjogaard, S. Bornmyr, M. Arborelius, and K. Jorgensen, “Intramuscular laser-Doppler flowmetry in the supraspinatus muscle during isometric contractions,” European Journal of Applied Physiology and Occupational Physiology, vol. 71, no. 4, pp. 373–378, 1995. View at Publisher · View at Google Scholar
  98. S. E. Larsson, H. Cai, Q. Zhang, R. Larsson, and P. A. Oberg, “Measurement by laser-Doppler flowmetry of microcirculation in lower leg muscle at different blood fluxes in relation to electromyographically determined contraction and accumulated fatigue,” European Journal of Applied Physiology and Occupational Physiology, vol. 70, no. 4, pp. 288–293, 1995.
  99. B. Saltin, “Exercise hyperaemia: magnitude and aspects on regulation in humans,” Journal of Physiology, vol. 583, no. 3, pp. 819–823, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. V. Strøm, S. Knardahl, J. K. Stanghelle, and C. Røe, “Pain induced by a single simulated office-work session: time course and association with muscle blood flux and muscle activity,” European Journal of Pain, vol. 13, no. 8, pp. 843–852, 2009. View at Publisher · View at Google Scholar · View at PubMed
  101. J. A. L. Calbert, M. Jensen-Urstad, G. van Hall, H. C. Holmberg, H. Rosdahl, and B. Saltin, “Maximal muscular vascular conductances during whole body upright exercise in humans,” Journal of Physiology, vol. 558, no. 1, pp. 319–331, 2004. View at Publisher · View at Google Scholar · View at PubMed
  102. J. A. L. Calbet, J. Gonzalez-Alonso, J. W. Helge et al., “Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer,” Journal of Applied Physiology, vol. 103, no. 3, pp. 969–978, 2007. View at Publisher · View at Google Scholar · View at PubMed
  103. P. Thaning, L. T. Bune, M. Zaar, B. Saltin, and J. B. Rosenmeier, “Functional sympatholysis during exercise in patients with type 2 diabetes with intact response to acetylcholine,” Diabetes Care, vol. 34, no. 5, pp. 1186–1191, 2011. View at Publisher · View at Google Scholar · View at PubMed
  104. J. S. Floras, C. A. Sinkey, P. E. Aylward, D. R. Seals, P. N. Thoren, and A. L. Mark, “Postexercise hypotension and sympathoinhibition in borderline hypertensive men,” Hypertension, vol. 14, no. 1, pp. 28–35, 1989.
  105. H. S. Dod, R. Bhardwaj, V. Sajja et al., “Effect of intensive lifestyle changes on endothelial function and on inflammatory markers of atherosclerosis,” American Journal of Cardiology, vol. 105, no. 3, pp. 362–367, 2010. View at Publisher · View at Google Scholar · View at PubMed
  106. G. L. Ghisi, A. Durieux, R. Pinho, and M. Benetti, “Physical exercise and endothelial dysfunction,” Arquivos Brasileiros de Cardiologia, vol. 95, no. 5, pp. e130–e137, 2010.
  107. S. Erbs, R. Höllriegel, A. Linke et al., “Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function,” Circulation: Heart Failure, vol. 3, no. 4, pp. 486–494, 2010. View at Publisher · View at Google Scholar · View at PubMed
  108. C. T. Minson, “Thermal provocation to evaluate microvascular reactivity in human skin,” Journal of Applied Physiology, vol. 109, no. 4, pp. 1239–1246, 2010. View at Publisher · View at Google Scholar · View at PubMed
  109. S. Biro, A. Masuda, T. Kihara, and C. Tei, “Clinical implications of thermal therapy in lifestyle-related diseases,” Experimental Biology and Medicine, vol. 228, no. 10, pp. 1245–1249, 2003.
  110. T. Kihara, S. Biro, M. Imamura et al., “Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 39, no. 5, pp. 754–759, 2002. View at Publisher · View at Google Scholar
  111. M. Miyata and C. Tei, “Waon therapy for cardiovascular disease: innovative therapy for the 21st century,” Circulation Journal, vol. 74, no. 4, pp. 617–621, 2010. View at Publisher · View at Google Scholar
  112. T. Brockow, A. Wagner, A. Franke, M. Offenbächer, and K. L. Resch, “A randomized controlled trial on the effectiveness of mild water-filtered near infrared whole-body hyperthermia as an adjunct to a standard multimodal rehabilitation in the treatment of fibromyalgia,” The Clinical journal of pain, vol. 23, no. 1, pp. 67–75, 2007. View at Publisher · View at Google Scholar · View at PubMed
  113. K. Matsushita, A. Masuda, and C. Tei, “Efficacy of Waon therapy for fibromyalgia,” Internal Medicine, vol. 47, no. 16, pp. 1473–1476, 2008. View at Publisher · View at Google Scholar
  114. S. E. Gowans and A. DeHueck, “Pool exercise for individuals with fibromyalgia,” Current Opinion in Rheumatology, vol. 19, no. 2, pp. 168–173, 2007. View at Publisher · View at Google Scholar · View at PubMed
  115. K. Mannerkorpi, M. Ahlmén, and C. Ekdahl, “Six- and 24-month follow-up of pool exercise therapy and education for patients with fibromyalgia,” Scandinavian Journal of Rheumatology, vol. 31, no. 5, pp. 306–310, 2002. View at Publisher · View at Google Scholar
  116. F. Wolfe, D. J. Clauw, M. A. Fitzcharles et al., “The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity,” Arthritis Care and Research, vol. 62, no. 5, pp. 600–610, 2010. View at Publisher · View at Google Scholar · View at PubMed
  117. T. M. Palermo, A. C. Wilson, A. S. Lewandowski, M. Toliver-Sokol, and C. B. Murray, “Behavioral and psychosocial factors associated with insomnia in adolescents with chronic pain,” Pain, vol. 152, no. 1, pp. 89–94, 2011. View at Publisher · View at Google Scholar · View at PubMed
  118. D. G. Baker, C. M. Nievergelt, and D. T. O'Connor, “Biomarkers of PTSD: neuropeptides and immune signaling,” Neuropharmacology. In press. View at Publisher · View at Google Scholar · View at PubMed
  119. G. Belleville, S. Guay, and A. Marchand, “Persistence of sleep disturbances following cognitive-behavior therapy for posttraumatic stress disorder,” Journal of Psychosomatic Research, vol. 70, no. 4, pp. 318–327, 2011. View at Publisher · View at Google Scholar · View at PubMed
  120. T. Fenzl, C. Touma, C. P.N. Romanowski et al., “Sleep disturbances in highly stress reactive mice: modeling endophenotypes of major depression,” BMC Neuroscience, vol. 12, article 29, 2011. View at Publisher · View at Google Scholar · View at PubMed
  121. T. A. Brown and A. J. Rosellini, “The direct and interactive effects of neuroticism and life stress on the severity and longitudinal course of depressive symptoms,” Journal of Abnormal Psychology. In press.
  122. J. A. Sumner, J. W. Griffith, S. Mineka, K. N. Rekart, R. E. Zinbarg, and M. G. Craske, “Overgeneral autobiographical memory and chronic interpersonal stress as predictors of the course of depression in adolescents,” Cognition and Emotion, vol. 25, no. 1, pp. 183–192, 2011. View at Publisher · View at Google Scholar · View at PubMed
  123. M.-F. Marin, C. Lord, J. Andrews et al., “Chronic stress, cognitive functioning and mental health,” Neurobiology of Learning and Memory. In press. View at Publisher · View at Google Scholar · View at PubMed
  124. C. Sandi and M. T. Pinelo-Nava, “Stress and memory: behavioral effects and neurobiological mechanisms,” Neural Plasticity, vol. 2007, Article ID 78970, 20 pages, 2007. View at Publisher · View at Google Scholar · View at PubMed
  125. P. Andreski, H. Chilcoat, and N. Breslau, “Post-traumatic stress disorder and somatization symptoms: a prospective study,” Psychiatry Research, vol. 79, no. 2, pp. 131–138, 1998. View at Publisher · View at Google Scholar
  126. G. J. G. Asmundson, M. J. Coons, S. Taylor, and J. Katz, “PTSD and the experience of pain: research and clinical implications of shared vulnerability and mutual maintenance models,” Canadian Journal of Psychiatry, vol. 47, no. 10, pp. 930–937, 2002.
  127. J. C. Beckham, A. L. Crawford, M. E. Feldman et al., “Chronic posttraumatic stress disorder and chronic pain in Vietnam combat veterans,” Journal of Psychosomatic Research, vol. 43, no. 4, pp. 379–389, 1997. View at Publisher · View at Google Scholar
  128. E. Fries, J. Hesse, J. Hellhammer, and D. H. Hellhammer, “A new view on hypocortisolism,” Psychoneuroendocrinology, vol. 30, no. 10, pp. 1010–1016, 2005. View at Publisher · View at Google Scholar · View at PubMed
  129. A. C. Mcfarlane, M. Atchison, E. Rafalowicz, and P. Papay, “Physical symptoms in post-traumatic stress disorder,” Journal of Psychosomatic Research, vol. 38, no. 7, pp. 715–726, 1994. View at Publisher · View at Google Scholar
  130. M. Muse, “Stress-related, posttraumatic chronic pain syndrome: criteria for diagnosis, and preliminary report on prevalence,” Pain, vol. 23, no. 3, pp. 295–300, 1985. View at Scopus
  131. T. J. Sharp and A. G. Harvey, “Chronic pain and posttraumatic stress disorder: mutual maintenance?” Clinical Psychology Review, vol. 21, no. 6, pp. 857–877, 2001. View at Publisher · View at Google Scholar
  132. G. D. Slade, L. Diatchenko, K. Bhalang et al., “Influence of psychological factors on risk of temporomandibular disorders,” Journal of Dental Research, vol. 86, no. 11, pp. 1120–1125, 2007. View at Publisher · View at Google Scholar
  133. M. Hummel, T. Cummons, P. Lu et al., “Pain is a salient “stressor” that is mediated by corticotropin-releasing factor-1 receptors,” Neuropharmacology, vol. 59, no. 3, pp. 160–166, 2010. View at Publisher · View at Google Scholar · View at PubMed
  134. S. B. Norman, M. B. Stein, J. E. Dimsdale, and D. B. Hoyt, “Pain in the aftermath of trauma is a risk factor for post-traumatic stress disorder,” Psychological Medicine, vol. 38, no. 4, pp. 533–542, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. A. Peckerman, B. E. Hurwitz, P. G. Saab, M. M. Llabre, P. M. McCabe, and N. Schneiderman, “Stimulus dimensions of the cold pressor test and the associated patterns of cardiovascular response,” Psychophysiology, vol. 31, no. 3, pp. 282–290, 1994.
  136. M. Rigaud, G. Gemes, S. E. Abram et al., “Pain tests provoke modality-specific cardiovascular responses in awake, unrestrained rats,” Pain, vol. 152, no. 2, pp. 274–284, 2011. View at Publisher · View at Google Scholar · View at PubMed
  137. C. J. Vierck, M. Green, and R. P. Yezierski, “Pain as a stressor: effects of prior nociceptive stimulation on escape responding of rats to thermal stimulation,” European Journal of Pain, vol. 14, no. 1, pp. 11–16, 2010. View at Publisher · View at Google Scholar · View at PubMed
  138. J. Moses, A. Steptoe, A. Mathews, and S. Edwards, “The effects of exercise training on mental well-being in the normal population: a controlled trial,” Journal of Psychosomatic Research, vol. 33, no. 1, pp. 47–61, 1989. View at Publisher · View at Google Scholar
  139. C. J. Lavie, R. V. Milani, J. H. O'Keefe, and T. J. Lavie, “Impact of exercise training on psychological risk factors,” Progress in Cardiovascular Diseases, vol. 53, no. 6, pp. 464–470, 2011. View at Publisher · View at Google Scholar · View at PubMed
  140. L. Brosseau, G. A. Wells, P. Tugwell et al., “Ottawa panel evidence-based clinical practice guidelines for aerobic fitness exercises in the management of fibromyalgia: part 1,” Physical Therapy, vol. 88, no. 7, pp. 857–871, 2008. View at Publisher · View at Google Scholar · View at PubMed
  141. A. J. Busch, C. L. Schachter, T. J. Overend, P. M. Peloso, and K. A. R. Barber, “Exercise for fibromyalgia: a systematic review,” Journal of Rheumatology, vol. 35, no. 6, pp. 1130–1144, 2008.
  142. I. A. Strigo, A. N. Simmons, S. C. Matthews, A. D. Craig, and M. P. Paulus, “Increased affective bias revealed using experimental graded heat stimuli in young depressed adults: evidence of “emotional allodynia”,” Psychosomatic Medicine, vol. 70, no. 3, pp. 338–344, 2008. View at Publisher · View at Google Scholar · View at PubMed
  143. G. E. Plante, “Depression and cardiovascular disease: a reciprocal relationship,” Metabolism, vol. 54, no. 5, pp. 45–48, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. B. L. Jacobs, H. van Praag, and F. H. Gage, “Adult brain neurogenesis and psychiatry: a novel theory of depression,” Molecular Psychiatry, vol. 5, no. 3, pp. 262–269, 2000.
  145. B. S. McEwen, “The neurobiology of stress: from serendipity to clinical relevance,” Brain Research, vol. 886, no. 1-2, pp. 172–189, 2000. View at Publisher · View at Google Scholar
  146. P. R. Croft, A. C. Papageorgiou, S. Ferry, E. Thomas, M. I. V. Jayson, and A. J. Silman, “Psychologic distress and low back pain: evidence from a prospective study in the general population,” Spine, vol. 20, no. 24, pp. 2731–2737, 1995.
  147. P. Leino and G. Magni, “Depressive and distress symptoms as predictors of low back pain, neck-shoulder pain, and other musculoskeletal morbidity: a 10-year follow-up of metal industry employees,” Pain, vol. 53, no. 1, pp. 89–94, 1993. View at Publisher · View at Google Scholar
  148. W. Katon, K. Egan, and D. Miller, “Chronic pain: lifetime psychiatric diagnoses and family history,” American Journal of Psychiatry, vol. 142, no. 10, pp. 1156–1160, 1985.
  149. S. J. Linton, “A review of psychological risk factors in back and neck pain,” Spine, vol. 25, no. 9, pp. 1148–1156, 2000. View at Publisher · View at Google Scholar
  150. M. D. Gayman, R. L. Brown, and M. Cui, “Depressive symptoms and bodily pain: the role of physical disability and social stress,” Stress and Health, vol. 27, no. 1, pp. 52–63, 2011. View at Publisher · View at Google Scholar · View at PubMed
  151. M. J. Bair, R. L. Robinson, W. Katon, and K. Kroenke, “Depression and pain comorbidity: a literature review,” Archives of Internal Medicine, vol. 163, no. 20, pp. 2433–2445, 2003. View at Publisher · View at Google Scholar · View at PubMed
  152. M. Cazzola, F. Atzeni, F. Salaffi, S. Stisi, G. Cassisi, and P. Sarzi-Puttini, “What kind of exercise is best in fibromyalgia therapeutic programmes? A practical review,” Clinical and Experimental Rheumatology, vol. 28, no. 6, supplement 63, pp. S117–S124, 2010.
  153. W. Hauser, P. Klose, J. Langhorst et al., “Efficacy of different types of aerobic exercise in fibromyalgia syndrome: a systematic review and meta-analysis of randomised controlled trials,” Arthritis Research & Therapy, vol. 12, p. R79, 2010. View at Publisher · View at Google Scholar · View at PubMed
  154. K. Mannerkorpi and M. D. Iversen, “Physical exercise in fibromyalgia and related syndromes,” Best Practice and Research: Clinical Rheumatology, vol. 17, no. 4, pp. 629–647, 2003. View at Publisher · View at Google Scholar
  155. E. N. Thomas and F. Blotman, “Aerobic exercise in fibromyalgia: a practical review,” Rheumatology International, vol. 30, no. 9, pp. 1143–1150, 2010. View at Publisher · View at Google Scholar · View at PubMed
  156. S. van Koulil, M. Effting, F. W. Kraaimaat et al., “Cognitive-behavioural therapies and exercise programmes for patients with fibromyalgia: state of the art and future directions,” Annals of the Rheumatic Diseases, vol. 66, no. 5, pp. 571–581, 2007. View at Publisher · View at Google Scholar · View at PubMed
  157. J. A. Blumenthal, M. A. Babyak, K. A. Moore et al., “Effects of exercise training on older patients with major depression,” Archives of Internal Medicine, vol. 159, no. 19, pp. 2349–2356, 1999. View at Publisher · View at Google Scholar
  158. R. Canbeyli, “Sensorimotor modulation of mood and depression: an integrative review,” Behavioural Brain Research, vol. 207, no. 2, pp. 249–264, 2010. View at Publisher · View at Google Scholar · View at PubMed
  159. C. Nabkasorn, N. Miyai, A. Sootmongkol et al., “Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms,” European Journal of Public Health, vol. 16, no. 2, pp. 179–184, 2006. View at Publisher · View at Google Scholar · View at PubMed
  160. D. I. Galper, M. H. Trivedi, C. E. Barlow, A. L. Dunn, and J. B. Kampert, “Inverse association between physical inactivity and mental health in men and women,” Medicine and Science in Sports and Exercise, vol. 38, no. 1, pp. 173–178, 2006. View at Publisher · View at Google Scholar
  161. W. J. Kop, A. A. Weinstein, P. A. Deuster, K. S. Whittaker, and R. P. Tracy, “Inflammatory markers and negative mood symptoms following exercise withdrawal,” Brain, Behavior, and Immunity, vol. 22, no. 8, pp. 1190–1196, 2008. View at Publisher · View at Google Scholar · View at PubMed
  162. M. Joëls, Z. Pu, O. Wiegert, M. S. Oitzl, and H. J. Krugers, “Learning under stress: how does it work?” Trends in Cognitive Sciences, vol. 10, no. 4, pp. 152–158, 2006. View at Publisher · View at Google Scholar · View at PubMed
  163. J. J. Cerqueira, F. Mailliet, O. F. X. Almeida, T. M. Jay, and N. Sousa, “The prefrontal cortex as a key target of the maladaptive response to stress,” Journal of Neuroscience, vol. 27, no. 11, pp. 2781–2787, 2007. View at Publisher · View at Google Scholar · View at PubMed
  164. J. J. Radley, A. B. Rocher, M. Miller et al., “Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex,” Cerebral Cortex, vol. 16, no. 3, pp. 313–320, 2006. View at Publisher · View at Google Scholar · View at PubMed
  165. V. Duric and K. E. McCarson, “Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression,” The Journal of Pain, vol. 7, no. 8, pp. 544–555, 2006. View at Publisher · View at Google Scholar · View at PubMed
  166. R. M. Thomas, G. Hotsenpiller, and D. A. Peterson, “Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation,” Journal of Neuroscience, vol. 27, no. 11, pp. 2734–2743, 2007. View at Publisher · View at Google Scholar · View at PubMed
  167. R. S. Duman, J. Malberg, S. Nakagawa, and C. D'Sa, “Neuronal plasticity and survival in mood disorders,” Biological Psychiatry, vol. 48, no. 8, pp. 732–739, 2000. View at Publisher · View at Google Scholar
  168. C. W. Cotman, N. C. Berchtold, and L. A. Christie, “Exercise builds brain health: key roles of growth factor cascades and inflammation,” Trends in Neurosciences, vol. 30, no. 9, pp. 464–472, 2007. View at Publisher · View at Google Scholar · View at PubMed
  169. A. F. Kramer, K. I. Erickson, and S. J. Colcombe, “Exercise, cognition, and the aging brain,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1237–1242, 2006. View at Publisher · View at Google Scholar · View at PubMed
  170. E. B. Larson, L. Wang, J. D. Bowen et al., “Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older,” Annals of Internal Medicine, vol. 144, no. 2, pp. 73–81, 2006.
  171. E. A. Jones, J. McBeth, B. Nicholl et al., “What characterizes persons who do not report musculoskeletal pain? Results from a 4-year population-based longitudinal study (The Epifund Study),” Journal of Rheumatology, vol. 36, no. 5, pp. 1071–1077, 2009. View at Publisher · View at Google Scholar · View at PubMed
  172. S. van Liempt, E. Vermetten, E. Geuze, and H. G. M. Westenberg, “Pharmacotherapy for disordered sleep in post-traumatic stress disorder: a systematic review,” International Clinical Psychopharmacology, vol. 21, no. 4, pp. 193–202, 2006. View at Publisher · View at Google Scholar
  173. P. Meerlo, A. Sgoifo, and D. Suchecki, “Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity,” Sleep Medicine Reviews, vol. 12, no. 3, pp. 197–210, 2008. View at Publisher · View at Google Scholar · View at PubMed
  174. M. Haack, E. Lee, D. A. Cohen, and J. M. Mullington, “Activation of the prostaglandin system in response to sleep loss in healthy humans: potential mediator of increased spontaneous pain,” Pain, vol. 145, no. 1-2, pp. 136–141, 2009. View at Publisher · View at Google Scholar · View at PubMed
  175. S. Lautenbacher, B. Kundermann, and J. C. Krieg, “Sleep deprivation and pain perception,” Sleep Medicine Reviews, vol. 10, no. 5, pp. 357–369, 2006. View at Publisher · View at Google Scholar · View at PubMed
  176. E. P. Calandre, M. L. Rodriguez-Claro, F. Rico-Villademoros, J. S. Vilchez, J. Hidalgo, and A. Delgado-Rodriguez, “Effects of pool-based exercise in fibromyalgia symptomatology and sleep quality: a prospective randomised comparison between stretching and Ai Chi,” Clinical and Experimental Rheumatology, vol. 27, no. 5, pp. S21–S28, 2009.
  177. L. K. Sprod, O. G. Palesh, M. C. Janelsins et al., “Exercise, sleep quality, and mediators of sleep in breast and prostate cancer patients receiving radiation therapy,” Community Oncology, vol. 7, no. 10, pp. 463–471, 2010.
  178. M. F. Tang, T. H. Liou, and C. C. Lin, “Improving sleep quality for cancer patients: benefits of a home-based exercise intervention,” Supportive Care in Cancer, vol. 18, no. 10, pp. 1329–1339, 2010. View at Publisher · View at Google Scholar · View at PubMed
  179. S. Brand, M. Gerber, J. Beck, M. Hatzinger, U. Pühse, and E. Holsboer-Trachsler, “High exercise levels are related to favorable sleep patterns and psychological functioning in adolescents: a comparison of athletes and controls,” Journal of Adolescent Health, vol. 46, no. 2, pp. 133–141, 2010. View at Publisher · View at Google Scholar · View at PubMed
  180. K. M. Chen, M. H. Chen, M. H. Lin, J. T. Fan, H. S. Lin, and C. H. Li, “Effects of yoga on sleep quality and depression in elders in assisted living facilities,” The Journal of Nursing Research, vol. 18, no. 1, pp. 53–61, 2010.
  181. J. K. Payne, J. Held, J. Thorpe, and H. Shaw, “Effect of exercise on biomarkers, fatigue, sleep disturbances, and depressive symptoms in older women with breast cancer receiving hormonal therapy,” Oncology Nursing Forum, vol. 35, no. 4, pp. 635–642, 2008. View at Publisher · View at Google Scholar · View at PubMed
  182. K. J. Reid, K. G. Baron, B. Lu, E. Naylor, L. Wolfe, and P. C. Zee, “Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia,” Sleep Medicine, vol. 11, no. 9, pp. 934–940, 2010. View at Publisher · View at Google Scholar · View at PubMed
  183. F. Tentori, S. J. Elder, J. Thumma et al., “Physical exercise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): correlates and associated outcomes,” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 3050–3062, 2010. View at Publisher · View at Google Scholar · View at PubMed
  184. W. Wang, M. Sawada, Y. Noriyama et al., “Tai Chi exercise versus rehabilitation for the elderly with cerebral vascular disorder: a single-blinded randomized controlled trial,” Psychogeriatrics, vol. 10, no. 3, pp. 160–166, 2010. View at Publisher · View at Google Scholar · View at PubMed
  185. D. Kadetoff and E. Kosek, “The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia,” European Journal of Pain, vol. 11, no. 1, pp. 39–47, 2007. View at Publisher · View at Google Scholar · View at PubMed
  186. R. Staud, M. E. Robinson, E. E. Weyl, and D. D. Price, “Pain variability in fibromyalgia is related to activity and rest: role of peripheral tissue impulse input,” The Journal of Pain, vol. 11, no. 12, pp. 1376–1383, 2010. View at Publisher · View at Google Scholar · View at PubMed
  187. C. J. Vierck, R. Staud, D. D. Price, R. L. Cannon, A. P. Mauderli, and A. D. Martin, “The Effect of maximal exercise on temporal summation of second pain (windup)in patients with fibromyalgia syndrome,” The Journal of Pain, vol. 2, no. 6, pp. 334–344, 2001. View at Publisher · View at Google Scholar · View at PubMed
  188. K. D. Jones and G. L. Liptan, “Exercise interventions in fibromyalgia: clinical applications from the evidence,” Rheumatic Disease Clinics of North America, vol. 35, no. 2, pp. 373–391, 2009. View at Publisher · View at Google Scholar · View at PubMed
  189. M. D. Delp, “Differential effects of training on the control of skeletal muscle perfusion,” Medicine and Science in Sports and Exercise, vol. 30, no. 3, pp. 361–374, 1998. View at Publisher · View at Google Scholar
  190. A. T. White, A. R. Light, R. W. Hughen et al., “Severity of symptom flare after moderate exercise is linked to cytokine activity in chronic fatigue syndrome,” Psychophysiology, vol. 47, no. 4, pp. 615–624, 2010. View at Publisher · View at Google Scholar · View at PubMed
  191. C. J. Woolf, “Pain: moving from symptom control toward mechanism-specific pharmacologic management,” Annals of Internal Medicine, vol. 140, no. 6, pp. 441–451, 2004.
  192. B. K. Pedersen and B. Saltin, “Evidence for prescribing exercise as therapy in chronic disease,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, supplement 1, pp. 3–63, 2006. View at Publisher · View at Google Scholar · View at PubMed