About this Journal Submit a Manuscript Table of Contents
Pain Research and Treatment
Volume 2013 (2013), Article ID 217864, 8 pages
http://dx.doi.org/10.1155/2013/217864
Review Article

Role of NHE1 in Nociception

1Centro de Investigación y Posgrado y División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, 86040 Villahermosa, TAB, Mexico
2Hospital Regional de Alta Especialidad “Dr. Juan Graham Casasús”, 86126 Villahermosa, TAB, Mexico
3Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México, DF, Mexico
4Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada Tenorios 235, Colonia Granjas Coapa, 14330 México, DF, Mexico

Received 29 August 2012; Accepted 2 January 2013

Academic Editor: Pierangelo Geppetti

Copyright © 2013 Jorge Elías Torres-López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Chesler, “Regulation and modulation of pH in the brain,” Physiological Reviews, vol. 83, no. 4, pp. 1183–1221, 2003. View at Scopus
  2. A. Roos and W. F. Boron, “Intracellular pH,” Physiological Reviews, vol. 61, no. 2, pp. 296–434, 1981. View at Scopus
  3. J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nature Reviews Molecular Cell Biology, vol. 11, no. 1, pp. 50–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. W. Deitmer and C. R. Rose, “pH regulation and proton signalling by glial cells,” Progress in Neurobiology, vol. 48, no. 2, pp. 73–103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hulikova, A. L. Harris, R. D. Vaughan-Jones, and P. Swietach, “Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers,” Current Pharmaceutical Design, vol. 18, no. 10, pp. 1331–1137, 2012. View at Publisher · View at Google Scholar
  6. L. K. Putney, S. P. Denker, and D. L. Barber, “The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 527–552, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. F. Pedersen, M. E. O'Donnell, S. E. Anderson, and P. M. Cala, “Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl cotransport in the heart, brain, and blood,” American Journal of Physiology, vol. 291, no. 1, pp. R1–R25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Pouysségur, “Molecular biology and hormonal regulation of vertebrate Na+/H+ exchanger isoforms,” Renal Physiology and Biochemistry, vol. 17, no. 3-4, pp. 190–193, 1994. View at Scopus
  9. J. Orlowski and S. Grinstein, “Na+/H+ exchangers of mammalian cells,” Journal of Biological Chemistry, vol. 272, no. 36, pp. 22373–22376, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Orlowski and S. Grinstein, “Diversity of the mammalian sodium/proton exchanger SLC9 gene family,” Pflugers Archiv European Journal of Physiology, vol. 447, no. 5, pp. 549–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. F. Pedersen and P. M. Cala, “Comparative biology of the ubiquitous Na+/H+ exchanger, NHE1: lessons from erythrocytes,” Journal of Experimental Zoology Part A, vol. 301, no. 7, pp. 569–578, 2004. View at Scopus
  12. E. R. Slepkov, J. K. Rainey, B. D. Sykes, and L. Fliegel, “Structural and functional analysis of the Na+/H+ exchanger,” Biochemical Journal, vol. 401, no. 3, pp. 623–633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Obara, M. Szeliga, and J. Albrecht, “Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses,” Neurochemistry International, vol. 52, no. 6, pp. 905–919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Cardone, V. Casavola, and S. J. Reshkin, “The role of disturbed pH dynamics and the NA+/H+ exchanger in metastasis,” Nature Reviews Cancer, vol. 5, no. 10, pp. 786–795, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Avkiran, “Protection of the ischaemic myocardium by Na+/H+ exchange inhibitors: potential mechanisms of action,” Basic Research in Cardiology, vol. 96, no. 4, pp. 306–311, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Fliegel, “Regulation of myocardial Na+/H+ exchanger activity,” Basic Research in Cardiology, vol. 96, no. 4, pp. 301–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Imahashi, F. Mraiche, C. Steenbergen, E. Murphy, and L. Fliegel, “Overexpression of the Na+/H+ exchanger and ischemia-reperfusion injury in the myocardium,” American Journal of Physiology, vol. 292, no. 5, pp. H2237–H2247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. R. Cook, S. C. Bardswell, S. Pretheshan et al., “Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: a role for ER stress?” Journal of Molecular and Cellular Cardiology, vol. 46, no. 2, pp. 225–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Mraiche, C. S. Wagg, G. D. Lopaschuk, and L. Fliegel, “Elevated levels of activated NHE1 protect the myocardium and improve metabolism following ischemia/reperfusion injury,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 1, pp. 157–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Aickin and R. C. Thomas, “An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres,” Journal of Physiology, vol. 273, no. 1, pp. 295–316, 1977. View at Scopus
  21. C. Sardet, A. Franchi, and J. Pouysségur, “Molecular cloning of the growth-factor-activatable human Na+/H+ antiporter,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 53, no. 2, pp. 1011–1018, 1988. View at Scopus
  22. C. Sardet, A. Franchi, and J. Pouysségur, “Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter,” Cell, vol. 56, no. 2, pp. 271–280, 1989. View at Scopus
  23. G. Kemp, H. Young, and L. Fliegel, “Structure and function of the human Na+/H+ exchanger isoform,” Channels, vol. 2, no. 5, pp. 329–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Biemesderfer, J. Pizzonia, A. Abu-Alfa et al., “NHE3: a Na+/H+ exchanger isoform of renal brush border,” American Journal of Physiology, vol. 265, no. 5, pp. F736–F742, 1993. View at Scopus
  25. C. Bookstein, M. W. Musch, A. DePaoli et al., “A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity,” Journal of Biological Chemistry, vol. 269, no. 47, pp. 29704–29709, 1994. View at Scopus
  26. W. A. Hoogerwerf, S. C. Tsao, O. Devuyst et al., “NHE2 and NHE3 are human and rabbit intestinal brush-border proteins,” American Journal of Physiology, vol. 270, no. 1, pp. G29–G41, 1996. View at Scopus
  27. N. C. Zachos, M. Tse, and M. Donowitz, “Molecular physiology of intestinal Na+/H+ exchange,” Annual Review of Physiology, vol. 67, pp. 411–443, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. A. Klanke, Yan Ru Su, D. F. Callen et al., “Molecular cloning and physical and genetic mapping of a novel human Na+/H+ exchanger (NHE5/SLC9A5) to chromosome 16q22.1,” Genomics, vol. 25, no. 3, pp. 615–622, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. N. R. Baird, J. Orlowski, E. Z. Szabó et al., “Molecular cloning, genomic organization, and functional expression of Na+/H+ exchanger isoform 5 (NHE5) from human brain,” Journal of Biological Chemistry, vol. 274, no. 7, pp. 4377–4382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Miyazaki, M. Sakaguchi, S. Wakabayashi, M. Shigekawa, and K. Mihara, “NHE6 protein possesses a signal peptide destined for endoplasmic reticulum membrane and localizes in secretory organelles of the cell,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 49221–49227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Fukura, R. Ohgaki, M. Matsushita, N. Nakamura, K. Mitsui, and H. Kanazawa, “A membrane-proximal region in the C-terminal tail of NHE7 is required for its distribution in the trans-golgi network, distinct from NHE6 localization at endosomes,” Journal of Membrane Biology, vol. 234, no. 3, pp. 149–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Wakabayashi, T. Pang, X. Su, and M. Shigekawa, “A novel topology model of the human Na+/H+ exchanger isoform 1,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 7942–7949, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Béliveau, M. Demeule, and M. Potier, “Molecular size of the Na+-H+ antiport in renal brush border membranes, as estimated by radiation inactivation,” Biochemical and Biophysical Research Communications, vol. 152, no. 1, pp. 484–489, 1988. View at Scopus
  34. P. Fafournoux, J. Noël, and J. Pouysségur, “Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers,” Journal of Biological Chemistry, vol. 269, no. 4, pp. 2589–2596, 1994. View at Scopus
  35. M. Krishna and H. Narang, “The complexity of mitogen-activated protein kinases (MAPKs) made simple,” Cellular and Molecular Life Sciences, vol. 65, no. 22, pp. 3525–3544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Wang, N. L. C. L. Silva, P. A. Lucchesi et al., “Phosphorylation and regulation of the Na+/H+ exchanger through mitogen-activated protein kinase,” Biochemistry, vol. 36, no. 30, pp. 9151–9158, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. A. N. Moor and L. Fliegel, “Protein kinase-mediated regulation of the Na+/H+ exchanger in the rat myocardium by mitogen-activated protein kinase-dependent pathways,” Journal of Biological Chemistry, vol. 274, no. 33, pp. 22985–22992, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. A. N. Moor, X. T. Gan, M. Karmazyn, and L. Fliegel, “Activation of Na+/H+ exchanger-directed protein kinases in the ischemic and ischemic-reperfused rat myocardium,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 16113–16122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. A. R. Khaled, A. N. Moor, A. Li et al., “Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization,” Molecular and Cellular Biology, vol. 21, no. 22, pp. 7545–7557, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. R. S. Haworth, C. McCann, A. K. Snabaitis, N. A. Roberts, and M. Avkiran, “Stimulation of the plasma membrane Na+/H+ exchanger NHE1 by sustained intracellular acidosis. Evidence for a novel mechanism mediated by the ERK pathway,” Journal of Biological Chemistry, vol. 278, no. 34, pp. 31676–31684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Luo and D. Sun, “Physiology and pathophysiology of Na+/H+ exchange isoform 1 in the central nervous system,” Current Neurovascular Research, vol. 4, no. 3, pp. 205–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Karki, E. Coccaro, and L. Fliegel, “Sustained intracellular acidosis activates the myocardial Na+/H+ exchanger independent of amino acid Ser703 and p90rsk,” Biochimica et Biophysica Acta, vol. 1798, no. 8, pp. 1565–1576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Tominaga, T. Ishizaki, S. Narumiya, and D. L. Barber, “p160ROCK mediates RhoA activation of Na-H exchange,” The EMBO Journal, vol. 17, no. 16, pp. 4712–4722, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Yan, K. Nehrke, J. Choi, and D. L. Barber, “Nck-interacting kinase (NIK) phosphorylates the Na+-H+ exchanger NHE1 and regulates NHE1 activation by platelet-derived growth factor,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 31349–31356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Li, B. Alvarez, J. R. Casey, R. A. F. Reithmeier, and L. Fliegel, “Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 36085–36091, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Bertrand, S. Wakabayashi, T. Ikeda, J. Pouysségur, and M. Shigekawa, “The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites,” Journal of Biological Chemistry, vol. 269, no. 18, pp. 13703–13709, 1994. View at Scopus
  47. S. Wakabayashi, T. Ikeda, T. Iwamoto, J. Pouysségur, and M. Shigekawa, “Calmodulin-binding autoinhibitory domain controls 'pH-sensing' in the Na+/H+ exchanger NHE1 through sequence-specific interaction,” Biochemistry, vol. 36, no. 42, pp. 12854–12861, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Pang, X. Su, S. Wakabayashi, and M. Shigekawa, “Calcineurin homologous protein as an essential cofactor for Na+/H+ exchangers,” Journal of Biological Chemistry, vol. 276, no. 20, pp. 17367–17372, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Pang, S. Wakabayashi, and M. Shigekawa, “Expression of calcineurin B homologous protein 2 protects serum deprivation-induced cell death by serum-independent activation of Na+/H+ exchanger,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43771–43777, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. H. C. Zaun, A. Shrier, and J. Orlowski, “Calcineurin B homologous protein 3 promotes the biosynthetic maturation, cell surface stability, and optimal transport of the Na+/H+ exchanger NHE1 isoform,” Journal of Biological Chemistry, vol. 283, no. 18, pp. 12456–12467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Aharonovitz, H. C. Zaun, T. Balla, J. D. York, J. Orlowski, and S. Grinstein, “Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate,” Journal of Cell Biology, vol. 150, no. 1, pp. 213–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. S. P. Denker, D. C. Huang, J. Orlowski, H. Furthmayr, and D. L. Barber, “Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation,” Molecular Cell, vol. 6, no. 6, pp. 1425–1436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. A. K. Snabaitis, F. Cuello, and M. Avkiran, “Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ Exchanger NHE1,” Circulation Research, vol. 103, no. 8, pp. 881–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. K. Snabaitis, R. D'Mello, S. Dashnyam, and M. Avkiran, “A novel role for protein phosphatase 2A in receptor-mediated regulation of the cardiac sarcolemmal Na+/H+ exchanger NHE1,” Journal of Biological Chemistry, vol. 281, no. 29, pp. 20252–20262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. H. I. Rocha-González, G. Castañeda-Corral, C. I. Araiza-Saldaña et al., “Identification of the Na+/H+ exchanger 1 in dorsal root ganglion and spinal cord: its possible role in inflammatory nociception,” Neuroscience, vol. 160, no. 1, pp. 156–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Castañeda-Corral, H. I. Rocha-González, B. Godínez-Chaparro, J. M. Jiménez-Andrade, and V. Granados-Soto, “Role of the spinal Na+/H+ exchanger in formalin-induced nociception,” Neuroscience Letters, vol. 501, no. 1, pp. 4–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. K. H. Steen, H. Wegner, and P. W. Reeh, “The pH response of rat cutaneous nociceptors correlates with extracellular [Na+] and is increased under amiloride,” European Journal of Neuroscience, vol. 11, no. 8, pp. 2783–2792, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Castañeda-Corral, H. I. Rocha-González, Araiza-Saldañ et al., “Blockade of peripheral and spinal Na+/H+ exchanger increases formalin-induced long-lasting mechanical allodynia and hyperalgesia in rats,” Brain Research, vol. 1475, pp. 19–30, 2012. View at Publisher · View at Google Scholar
  59. I. Khan, I. Siddique, F. M. Al-Awadi, and K. Mohan, “Role of Na+/H+ exchanger isoform-1 in human inflammatory bowel disease,” Canadian Journal of Gastroenterology, vol. 17, no. 1, pp. 31–36, 2003. View at Scopus
  60. I. Siddique and I. Khan, “Mechanism of regulation of Na-H exchanger in inflammatory bowel disease: role of TLR-4 signaling mechanism,” Digestive Diseases and Sciences, vol. 56, no. 6, pp. 1656–1662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Muthuraman, A. S. Jaggi, N. Singh, and D. Singh, “Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats,” European Journal of Pharmacology, vol. 587, no. 1–3, pp. 104–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Ferreira, A. R. S. Santos, and J. B. Calixto, “Antinociception produced by systemic, spinal and supraspinal administration of amiloride in mice,” Life Sciences, vol. 65, no. 10, pp. 1059–1066, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. C. N. Liu and C. J. Somps, “Na+H+ exchanger-1 inhibitors reduce neuronal excitability and alter Na+ channel inactivation properties in rat primary sensory neurons,” Toxicological Sciences, vol. 103, no. 2, pp. 346–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. J. C. Pettersen, L. Chouinard, R. L. Kerlin et al., “Neurotoxic effects of zoniporide: a selective inhibitor of the Na+/H+ exchanger isoform 1,” Toxicologic Pathology, vol. 36, no. 4, pp. 608–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. M. Hwang, N. Y. Koo, M. Jin et al., “Intracellular acidification is associated with changes in free cytosolic calcium and inhibition of action potentials in rat trigeminal ganglion,” Journal of Biological Chemistry, vol. 286, no. 3, pp. 1719–1729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. I. Khan, F. M. Al-Awadi, and H. Abul, “Colitis-induced changes in the expression of the Na+/H+ exchanger isoform NHE-1,” Journal of Pharmacology and Experimental Therapeutics, vol. 285, no. 2, pp. 869–875, 1998. View at Scopus
  67. J. H. Shin, W. Namkung, C. H. Kim et al., “Expression of Na+/H+ exchanger isoforms in normal human nasal epithelial cells and functional activity of Na+/H+ exchanger 1 in intracellular pH regulation,” Acta Oto-Laryngologica, vol. 125, no. 3, pp. 286–292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. BioGPS, http://biogps.org/#goto=welcome.
  69. N. L. Nakhoul, S. Abdulnour-Nakhoul, R. N. Khuri, E. M. Lieberman, and P. T. Hargittai, “Intracellular pH regulation in rat Schwann cells,” Glia, vol. 10, no. 3, pp. 155–164, 1994. View at Scopus
  70. Y. Yamamoto and K. Taniguchi, “Distribution of pH regulators in the rat laryngeal nerve: the spatial relationship between Na+/HCO3 cotransporters and Na+/H+ exchanger type 3,” Neuroscience Letters, vol. 368, no. 2, pp. 127–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. R. D. Saunders, Y. W. Brandon, and G. H. De Vries, “Role of intracellular pH in the axolemma- and myelin-induced proliferation of Schwann cells,” Journal of Neurochemistry, vol. 52, no. 5, pp. 1576–1581, 1989. View at Scopus
  72. Y. Liu, D. B. Kintner, V. Chanana et al., “Activation of microglia depends on Na+/H+ exchange-mediated H+ homeostasis,” Journal of Neuroscience, vol. 30, no. 45, pp. 15210–15220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Faff, C. Ohlemeyer, and H. Kettenmann, “Intracellular pH regulation in cultured microglial cells from mouse brain,” Journal of Neuroscience Research, vol. 46, no. 3, pp. 294–304, 1996. View at Publisher · View at Google Scholar
  74. Y. Shi, V. Chanana, J. J. Watters, P. Ferrazzano, and D. Sun, “Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains,” Journal of Neurochemistry, vol. 119, no. 1, pp. 124–135, 2011. View at Publisher · View at Google Scholar
  75. R. W. Colburn, A. J. Rickman, and J. A. Deleo, “The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior,” Experimental Neurology, vol. 157, no. 2, pp. 289–304, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. S. X. Jin, Z. Y. Zhuang, C. J. Woolf, and R. R. Ji, “p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain,” Journal of Neuroscience, vol. 23, no. 10, pp. 4017–4022, 2003. View at Scopus
  77. M. D. Laird, J. R. Vender, and K. M. Dhandapani, “Opposing roles for reactive astrocytes following traumatic brain injury,” NeuroSignals, vol. 16, no. 2-3, pp. 154–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. D. J. Benos, S. McPherson, B. H. Hahn, M. A. Chaikin, and E. N. Benveniste, “Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes,” Journal of Biological Chemistry, vol. 269, no. 19, pp. 13811–13816, 1994. View at Scopus
  79. M. O. Bevensee, M. Apkon, and W. F. Boron, “Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport,” Journal of General Physiology, vol. 110, no. 4, pp. 467–483, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. J. H. Pizzonia, B. R. Ransom, and C. A. Pappas, “Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes,” Journal of Neuroscience Research, vol. 44, no. 2, pp. 191–198, 1996.
  81. P. Cengiz, N. Kleman, K. Uluc et al., “Inhibition of Na+/H+ exchanger isoform 1 is neuroprotective in neonatal hypoxic ischemic brain injury,” Antioxidants and Redox Signaling, vol. 14, no. 10, pp. 1803–1813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. D. B. Kintner, A. Look, G. E. Shull, and D. Sun, “Stimulation of astrocyte Na+/H+ exchange activity in response to in vitro ischemia depends in part on activation of ERK1/2,” American Journal of Physiology, vol. 289, no. 4, pp. C934–C945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Mandal, M. Shahidullah, N. A. Delamere, and M. A. Terán, “Elevated hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve head astrocytes,” American Journal of Physiology, vol. 297, no. 1, pp. C111–C120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. M. Touyz, S. Picard, E. L. Schiffrin, and C. F. Deschepper, “Cyclic GMP inhibits a pharmacologically distinct Na+/H+ exchanger variant in cultured rat astrocytes via an extracellular site of action,” Journal of Neurochemistry, vol. 68, no. 4, pp. 1451–1461, 1997. View at Scopus
  85. I. Siddique, F. Hasan, and I. Khan, “Suppression of Na+/H+ exchanger isoform-3 in human inflammatory bowel disease: lack of reversal by 5-aminosalicylate treatment,” Scandinavian Journal of Gastroenterology, vol. 44, no. 1, pp. 56–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. H. Németh, E. A. Deitch, C. Szabó et al., “Na+/H+ exchanger blockade inhibits enterocyte inflammatory response and protects against colitis,” American Journal of Physiology, vol. 283, no. 1, pp. G122–G132, 2002. View at Scopus
  87. F. Kamachi, S. B. Hyun, N. Hirasawa, and K. Ohuchi, “Inhibition of lipopolysaccharide-induced prostaglandin E2 production and inflammation by the Na+/H+ exchanger inhibitors,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, no. 1, pp. 345–352, 2007. View at Publisher · View at Google Scholar · View at Scopus